Engineers at USC and UT-Austin boost the sensitivity of night vision goggles by using quantum dots

Jul 14, 2004

Researchers at USC and the University of Texas at Austin have built and tested a device based on nanostructures called quantum dots that can sensitively detect infrared radiation in a crucial wavelength range. The atmosphere is opaque to most infrared, but it is transparent for a narrow “window” between 8 and 12 microns. Night vision goggles, military target tracking devices and environmental monitors utilize this range of wavelengths.

“We have created a detector based on different physics - quantum dot physics - that works at least as well and has the potential to perform better,” Madhukar said.

Madhukar worked with Joe C. Campbell, who holds the Cockrell Family Regents Chair in the UT Austin College of Engineering’s department of electrical and computer engineering. The two engineers described the device in a recent issue of Applied Physics Letters.

The device uses self-assembled “quantum dots,” island-like pyramidal structures made of semiconductors. Each dot has a core of indium arsenide surrounded by gallium arsenide and an indium-gallium arsenide alloy. A single dot is approximately 20 nanometers (2 millionths of a centimeter) in base size and about 4 nanometers in height.

The three-dimensional confinement of electrons within these structures creates unique, characteristic behavior. By using varying proportions of the materials and changing synthesis procedures, engineers can tailor quantum dots for use in lasers, detectors, optical amplifiers, transistors, tunneling diodes and other devices.

“Quantum dots are emerging as the most viable semiconductor nanotechnology for future higher-performance communication systems, biomedical imaging, environmental sensors and infrared detection,” Madhukar said.

Unlike their alternatives, quantum dot infrared detectors strongly absorb radiation shining perpendicular to the plane of an array of quantum dots.

By contrast, the alternate quantum well detectors don’t pick up radiation that shines straight down on them. To achieve this “necessitates additional processing steps,” Madhukar said. This increases the cost of the well detectors.

When the engineers benchmarked the new device using standard tests, its detectivity was nearly 100 times higher than the previously reported peak for quantum dot systems. The new range is competitive with the corresponding values for the well-established quantum well infrared photo detectors.

More information at: www.usc.edu/


Explore further: Innovative strategy to facilitate organ repair

add to favorites email to friend print save as pdf

Related Stories

Bright future for protein nanoprobes

Mar 18, 2014

(Phys.org) —The term a "brighter future" might be a cliché, but in the case of ultra-small probes for lighting up individual proteins, it is now most appropriate. Researchers at the U.S. Department of ...

Physicists confine electrons inside nano-pyramids

Sep 28, 2012

(Phys.org)—Quantum dots are nanostructures of semiconducting materials that behave a lot like single atoms and are very easy to produce. Given their special properties, researchers see huge potential for ...

Nanocrystal infrared LEDs can be made cheaply

May 10, 2012

(Phys.org) -- Light-emitting diodes at infrared wavelengths are the magic behind such things as night vision and optical communications, including the streaming data that comes through Netflix. Cornell researchers have advanced ...

Recommended for you

Innovative strategy to facilitate organ repair

Apr 18, 2014

A significant breakthrough could revolutionize surgical practice and regenerative medicine. A team led by Ludwik Leibler from the Laboratoire Matière Molle et Chimie (CNRS/ESPCI Paris Tech) and Didier Letourneur ...

'Exotic' material is like a switch when super thin

Apr 18, 2014

(Phys.org) —Ever-shrinking electronic devices could get down to atomic dimensions with the help of transition metal oxides, a class of materials that seems to have it all: superconductivity, magnetoresistance ...

Thinnest feasible nano-membrane produced

Apr 17, 2014

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

User comments : 0

More news stories

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...

Ex-Apple chief plans mobile phone for India

Former Apple chief executive John Sculley, whose marketing skills helped bring the personal computer to desktops worldwide, says he plans to launch a mobile phone in India to exploit its still largely untapped ...

Filipino tests negative for Middle East virus

A Filipino nurse who tested positive for the Middle East virus has been found free of infection in a subsequent examination after he returned home, Philippine health officials said Saturday.

Egypt archaeologists find ancient writer's tomb

Egypt's minister of antiquities says a team of Spanish archaeologists has discovered two tombs in the southern part of the country, one of them belonging to a writer and containing a trove of artifacts including reed pens ...