Light Scattering Method Reveals Details under Skin

Apr 12, 2005

A new optical method that can image subsurface structures under skin has been demonstrated by scientists at the National Institute of Standards and Technology (NIST) and the Johns Hopkins University Applied Physics Laboratory.
The method relies on differences in the way surface and subsurface features of various materials scatter light. It was demonstrated with small pieces of pigskin and inorganic materials but might eventually prove useful for imaging living tissues to help diagnose or determine the extent of various types of skin cancers. A paper on the work was presented at a recent technical meeting and is in press.*

The imaging process involves illuminating a sample with polarized light, which has its electric field oriented in a particular direction, and using a digital camera with a rotating polarization filter to image the light scattered from the sample. Researchers manipulated the polarization to minimize light scattered from the rough skin surface, and positioned the light source in multiple locations to separate out, and delete, light scattered more than one time from deeper sample layers. By using certain polarization settings and combining two images made with the light source in different positions, they generated a processed image that reveals significant subsurface structure.

Polarized light imaging already is used in dermatology to identify the edges of lesions. The new method minimizes the effects of two types of unwanted light scattering at once, and thus, if confirmed by other methods, might someday be used in a clinical setting to produce more detailed images of deeper layers of skin.

The method was developed under a Cooperative Research and Development Agreement between the two institutions. The project adapted light scattering techniques originally developed by NIST researchers to image surface and subsurface features in inorganic materials such as silicon wafers, mirrors and paint coatings. Scientists currently are working on making the new method easier and faster to use.

*Publication: J.C. Ramella-Roman, D. Duncan, T.A. Germer. 2005. Out-of-plane polarimetric imaging of skin: Surface and subsurface effects. In Photonic Therapeutics and Diagnostics, Nikiforos Kollias et al., eds. Proc. SPIE 5686 (forthcoming).

Explore further: X-ray powder diffraction beamline at NSLS-II takes first beam and first data

add to favorites email to friend print save as pdf

Related Stories

Biomarkers of the deep

Jul 25, 2014

Tucked away in the southwest corner of Spain is a unique geological site that has fascinated astrobiologists for decades. The Iberian Pyrite Belt (IPB) in Spain's Río Tinto area is the largest known deposit ...

Milky Way may bear 100 million life-giving planets

Jun 04, 2014

(Phys.org) —There are some 100 million other places in the Milky Way galaxy that could support complex life, report a group of university astronomers in the journal Challenges. They have developed a new ...

50 years of Mars observations

May 08, 2014

(Phys.org) —In 1964, Caltech astronomy professor Guido Münch and Jet Propulsion Laboratory space scientists Lewis Kaplan and Hyron Spinrad pushed the world's second-largest telescope to its limits and ...

Democratizing science with high speed networks

Apr 01, 2014

In the burgeoning world of nanotechnology, researchers see many potentially useful properties at the interfaces of materials called metal oxides—from magnetoresistance (the reason a hard drive can write ...

Recommended for you

Scientists film magnetic memory in super slow-motion

2 hours ago

Researchers at DESY have used high-speed photography to film one of the candidates for the magnetic data storage devices of the future in action. The film was taken using an X-ray microscope and shows magnetic ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.