Breakthrough Technology Accelerates Solid-State Lighting

Apr 11, 2005
Breakthrough Technology Accelerates Solid-State Lighting

"SPE" method boosts LED development with dramatic increase in light output

Scientists at the Lighting Research Center (LRC) at Rensselaer Polytechnic Institute have developed a method known as "SPE" to get significantly more light from white LEDs (light-emitting diodes) without requiring more energy.

Image: LED fixture incorporating SPE technology

“We have developed a technology based on a new scattered photon extraction (SPE) method that will speed up the progress of solid-state lighting and help secure our nation’s energy future,” said Nadarajah Narendran, Ph.D., director of research at the LRC. “The new technology dramatically increases light output and efficacy of white LEDs, and could play a fundamental role in the evolution of white LEDs for lighting in homes and offices.”

Commercially available white LEDs combine a light-emitting semiconductor with a phosphor, a rare earth compound, to produce visible white light. However, more than half of the light, or photons, produced by the phosphor is diverted back toward the LED where much of it is lost due to absorption. This reduces the LED’s overall light output.

A research group, led by Dr. Narendran, developed a method to extract the backscattered photons by moving the phosphor away from the semiconductor and shaping the LED lens geometry. When combined, these changes allow the photons that would typically be absorbed inside the LED to escape as visible light. The new technology is patent pending.

“Demonstration of this new ‘remote phosphor’ concept by Rensselaer’s Lighting Research Center is an exciting development for solid-state lighting,” said Dr. Jeffrey Tsao, principal member of the technical staff at Sandia National Laboratories. “This advance has a number of significant implications, including higher-efficiency extraction of photons.”

Compared to commercial white LEDs, prototypes of the new SPE LED technology produced 30-60 percent more light output and luminous efficacy—light output (lumens) per watt of electricity. This means more visible light is produced without increasing energy consumption. Further research into the SPE technology could result in even higher levels of light output and greater luminous efficacy, according to Narendran.

The industry has set a target for white LEDs to reach 150 lumens per watt (lm/W) by the year 2012. The new SPE LEDs, under certain operating conditions, are able to achieve more than 80 lm/W, compared to today’s typical compact fluorescent lamp at 60 lm/W and a typical incandescent lamp at 14 lm/W.

“As LED components improve in efficiency, SPE will further multiply those improvements and help catapult the industry toward its goal,” said Narendran. “The possibility of solid-state lighting replacing traditional incandescent and fluorescent lamps looks promising.”

According to Narendran, his group is the first to use the SPE method to improve white LED performance. The research was funded by the U.S. Department of Energy’s Building Technologies Program and the National Energy Technology Laboratory through its competitive research and development program (cooperative agreement no. DE-FC26-01NT41203), and is a collaborative effort with the University of California, Santa Barbara.

The SPE research is published online in the journal physica status solidi (a), published by John Wiley & Sons, and will be published in an upcoming print edition of the journal.

Narendran joined Rensselaer’s Lighting Research Center in 1996 and was named director of research for the LRC in 1998. He is also an associate professor within Rensselaer’s School of Architecture. Narendran earned a doctorate in physics in 1991 and a master’s in physics in 1987 from the University of Rhode Island, and a bachelor’s in physics in 1983 from the University of Peradeniya, Sri Lanka.

LED Technology

LEDs are made of semiconductor chips and emit light when a current passes through them. LED lighting offers many benefits, including safety, flexibility and light quality. Since LED lighting systems have proved to be very effective in applications where brightness, visibility and long-life are important, they were typically used for exit signs and traffic signals, and then applications expanded to include small-area lighting.

Lighting applications that use light-emitting diodes are referred to as solid-state lighting (SSL). According to the U.S. Department of Energy, by 2025, SSL could displace general illumination light sources such as incandescent and fluorescent lamps, decreasing national energy consumption for lighting by 29 percent.

To learn more about the ground-breaking SSL research taking place at the LRC, visit its SSL Web site at www.lrc.rpi.edu/programs/solidstate/

Source: Rensselaer Polytechnic Institute

Explore further: At the origin of cell division: The features of living matter emerge from inanimate matter

add to favorites email to friend print save as pdf

Related Stories

Building better soybeans for a hot, dry, hungry world

3 hours ago

(Phys.org) —A new study shows that soybean plants can be redesigned to increase crop yields while requiring less water and helping to offset greenhouse gas warming. The study is the first to demonstrate ...

How does false information spread online?

3 hours ago

Last summer the World Economic Forum (WEF) invited its 1,500 council members to identify top trends facing the world, including what should be done about them. The WEF consists of 80 councils covering a wide range of issues including social media. Members come ...

Neuroscientist's idea wins new-toy award

Apr 15, 2014

When he was a child, Robijanto Soetedjo used to play with his electrically powered toys for a while and then, when he got bored, take them apart - much to the consternation of his parents.

Vegetables on Mars within ten years?

Apr 15, 2014

The soil on Mars may be suitable for cultivating food crops – this is the prognosis of a study by plant ecologist Wieger Wamelink of Wageningen UR. This would prove highly practical if we ever decide to ...

Oil drilling possible 'trigger' for deadly Italy quakes

Apr 15, 2014

Italy's Emilia-Romagna region on Tuesday suspended new drilling as it published a report that warned that hydrocarbon exploitation may have acted as a "trigger" in twin earthquakes that killed 26 people in ...

Recommended for you

Progress in the fight against quantum dissipation

4 hours ago

(Phys.org) —Scientists at Yale have confirmed a 50-year-old, previously untested theoretical prediction in physics and improved the energy storage time of a quantum switch by several orders of magnitude. ...

User comments : 0

More news stories

Down's chromosome cause genome-wide disruption

The extra copy of Chromosome 21 that causes Down's syndrome throws a spanner into the workings of all the other chromosomes as well, said a study published Wednesday that surprised its authors.

Researchers see hospitalization records as additional tool

Comparing hospitalization records with data reported to local boards of health presents a more accurate way to monitor how well communities track disease outbreaks, according to a paper published April 16 in the journal PLOS ON ...

Ebola virus in Africa outbreak is a new strain

The Ebola virus that has killed scores of people in Guinea this year is a new strain—evidence that the disease did not spread there from outbreaks in some other African nations, scientists report.