Possible Quantum Stumbling Block Found For Nanotechnologies

Jul 09, 2004

The rage to exploit all things quantum may have hit a snag. Quantum nanorods, atomic structures that have been heralded as the key to everything from super-efficient solar cells to an elusive white laser, appear to have an inherent surface charge that may tarnish their gleaming image, according to a report by University of Rochester scientists in a recent issue of Physical Review Letters.

“This is not a positive nano-tech revelation,” says Todd Krauss, assistant professor of chemistry and principal author of the research. “We’ve found that while perfect nanorods have all this wonderful potential, in reality the current manufacturing process has a serious flaw that gives the rods a charge, and it is this charge that we expect will seriously degrade their usefulness.”

Quantum rods are lengths of latticed atoms of cadmium and selenium that ought to have no overall charge, but Krauss has discovered that while textbook physics says rods should not have a permanent surface charge, in reality they do. He thinks he’s figured out why.

Ideally, quantum nanorods would be constructed of identical layers of bonded atoms. In reality, however, the lattice of cadmium and selenium is skewed, and this imperfect fabrication process creates slightly varied layers that build up to create large disturbances in the overall surface charge profile. Imagine a stack of books where one in the middle is not placed exactly on the one below it; its spine protrudes out one side and its leafed side is sunken into the stack on the other. The overhang allows some of the cover of the book to be visible; in the quantum rod, that visible part of the layer is made of charge-carrying atoms, and their charge disrupts the overall surface charge neutrality of the rod. Improperly stack enough layers in the rod and an appreciable surface charge builds up.

The problem of skewed layers is likely an artifact of the fabrication process, says Krauss. The rods are created in a highly controlled molecular bath where the correct atoms naturally bond in the correct areas. During the rod synthesis, however, many growing rods stick together, creating warps and skewing that only get more uneven as the fabrication continues. Even though the rods are nominally cylindrical, under intense magnification Krauss was able to show that they’re more like tree limbs with knots, bumps, and bends.

“The problem with using these for solar panels or other devices is that they’re charged particles, and that means they’re going to interact,” says Krauss. “For example, making liquid crystals out of quantum rods means thinking about how they aren’t simple neutral particles anymore. Companies are spending millions to design solar cells out of these things, but charged solar cell elements are potentially problematic since they attract the very electron you’re trying to harvest. It’s a really important issue that will have to be addressed before quantum rods reach their full potential for devices of this sort.”

This research was funded by the National Science Foundation, and the New York State Office of Science, Technology, and Academic Research. Working with Krauss were doctoral students Rishikesh Krishnan and Megan Hahn from the University of Rochester, and John Silcox, professor of engineering at Cornell University, with his doctoral student Zhiheng Yu.

Source: University of Rochester

Explore further: Spider's web weaves way to advanced networks and displays

add to favorites email to friend print save as pdf

Related Stories

Microbial 'signature' for sexual crimes

1 hour ago

Bacterial communities living on an individual's pubic hairs could be used as a microbial 'signature' to trace their involvement in sexual assault cases, according to a study published in the open access journal Investigative Ge ...

Brazil: Google fined in Petrobras probe

2 hours ago

A Brazilian court says it has fined Google around $200,000 for refusing to intercept emails needed in a corruption investigation at state-run oil company Petrobras.

Atari's 'E.T.' game joins Smithsonian collection

3 hours ago

One of the "E.T." Atari game cartridges unearthed this year from a heap of garbage buried deep in the New Mexico desert has been added to the video game history collection at the Smithsonian.

Sony threatens to sue for publishing stolen emails

3 hours ago

A lawyer representing Sony Pictures Entertainment is warning news organizations not to publish details of company files leaked by hackers in one of the largest digital breaches ever against an American company.

Microsoft builds support over Ireland email case

3 hours ago

Microsoft said Monday it had secured broad support from a coalition of influential technology and media firms as it seeks to challenge a US ruling ordering it to hand over emails stored on a server in Ireland.

Recommended for you

Gold nanorods target cancer cells

11 hours ago

Using tiny gold nanorods, researchers at Swinburne University of Technology have demonstrated a potential breakthrough in cancer therapy.

Chemically driven micro- and nanomotors

Dec 17, 2014

At least since the movie "The Fantastic Voyage" in 1966, in which a submarine is shrunk down and injected into the blood stream of a human, people have been toying with the idea of sending tiny "micromachines" ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.