Quantum computing: No turning back

Mar 15, 2005

The first realizations of 'cluster states' and cluster-state quantum computation are reported in Nature this week (10 March issue, pp169-176). This represents a significant move from theory to reality for an alternative approach to quantum computing first proposed in 2001.

Anton Zeilinger and colleagues (University of Vienna, Austria) take Robert Raussendorf and Hans Briegel’s ideas for computing, based on highly entangled clusters of many particles - in this case photons - and demonstrate that modifications to the entangled photons in such a state allows them to perform certain computing tasks. The entangled photons allow the system to encode information before computations begin and imprint a quantum logic circuit on the state, destroying its entanglement and making the process irreversible. Hence the name ‘one-way quantum computing’ for the system.

This article reports the first experimental demonstration of the one-way quantum computer, which radically changes how we think about quantum physics and opens up exciting possibilities for the experimental implementation of quantum computation.

Explore further: How we can substitute critical raw materials in catalysis, electronics and photonics

add to favorites email to friend print save as pdf

Related Stories

Quantum computer as detector shows space is not squeezed

Jan 28, 2015

Ever since Einstein proposed his special theory of relativity in 1905, physics and cosmology have been based on the assumption that space looks the same in all directions - that it's not squeezed in one direction ...

Recommended for you

Semiconductor miniaturisation with 2D nanolattices

Feb 26, 2015

A European research project has made an important step towards the further miniaturisation of nanoelectronics, using a highly-promising new material called silicene. Its goal: to make devices of the future ...

Ultra-small block 'M' illustrates big ideas in drug delivery

Feb 26, 2015

By making what might be the world's smallest three-dimensional unofficial Block "M," University of Michigan researchers have demonstrated a nanoparticle manufacturing process capable of producing multilayered, precise shapes.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.