Nanoscience solutions for energy technologies advocated

Mar 10, 2005

Breakthroughs in nanotechnology could open up the possibility of moving beyond the United States' current alternatives for energy supply by introducing technologies that are more efficient, inexpensive and environmentally sound, according to a new science policy study by Rice University.
The report, based on input from 50 leading U.S. scientists who gathered at Rice in May 2003, found that key contributions can be made in energy security and supply through fundamental research on nanoscience solutions to energy technologies. The group of experts concluded that a major nanoscience and energy research program should be aimed at long-term breakthrough possibilities in cleaner sources of energy, particularly solar energy, while providing vital science backup to current technologies in the short term, including technologies for storing and transmitting electricity.

The study findings were announced as Congress and the Bush administration begin another round of efforts to pass national energy legislation. Senator Pete Domenici, chairman of the Senate Energy and Natural Resources Committee, recently vowed to work collaboratively with Democrats to get a substantive, passable bill.

“The 2003 energy bill effort was an amalgamation of giveaways to special-interest groups,” said Amy Myers Jaffe, the Wallace S. Wilson Fellow for Energy Studies at Rice's Baker Institute for Public Policy. “What is needed is a more focused debate that puts regional or parochial short-term interests aside and emphasizes our long-term national interests. The outlook is dire. We need real solutions, not useless handouts.”

The participating scientists agreed that nanotechnology could revolutionize lighting and electricity grid technology. A breakthrough in electricity transmission technology would facilitate not only distributed electricity but also render commercially viable the transmission of electricity from distant sources of energy such as solar collector farms located in desert geography or closed-loop clean coal FutureGen sequestration power plants built near geologic formations. Improvements in electricity transmission would also permit the transportation of electricity by wire from power stations built near stranded natural gas reserves in remote regions.

Scientists theorize that transmission lines built from carbon nanotubes that could conduct electricity across great distances without loss would radically change the economics of moving “energy” supply from distant natural gas sources, distant wind and solar farms, and coal sequestration sites. Howard Schmidt, executive director of the Carbon Nanotechnology Laboratory at Rice, believes that development of such a wire is possible within five years with adequate research and development funding.

“Energy is unique not only in its ability to give us answers to most other problems, but it is also uniquely something we can do something about,” said Nobel Laureate Richard Smalley, University Professor at Rice. He noted that the Bush administration's initiatives on energy technology were laudable but the level of financial commitment is not large enough to achieve needed breakthroughs.

The meeting was hosted by the Baker Institute, Rice's Center for Nanoscale Science and Technology, Environmental and Energy Systems Institute and the Rice Alliance for Technology and Entrepreneurship as part of an ongoing program on energy and nanotechnology that is aimed to reinvigorate public interest in the physical sciences by showcasing potentially revolutionary breakthroughs in the energy technology area. The program highlights how science can have direct bearing on people's lives.

Source: Rice University

Explore further: Relaxing DNA strands by using nano-channels

add to favorites email to friend print save as pdf

Related Stories

To bolster lithium battery life, add a little salt

Aug 14, 2014

(Phys.org) —Cornell chemical engineers have achieved a breakthrough in the race to achieve safer, longer-lasting batteries to power the world's automobiles, cell phones, computers and autonomous robots.

Molecular engineers record an electron's quantum behavior

Aug 14, 2014

A team of researchers led by the University of Chicago has developed a technique to record the quantum mechanical behavior of an individual electron contained within a nanoscale defect in diamond. Their technique ...

Towards more efficient solar cells

Aug 13, 2014

A layer of silicon nanocrystals and erbium ions may help solar cells to extract more energy from the ultraviolet (UV, high-energy) part of the solar spectrum. Experimental physicists from the FOM Foundation, ...

Recommended for you

Relaxing DNA strands by using nano-channels

2 hours ago

A simple and effective way of unravelling the often tangled mass of DNA is to 'thread' the strand into a nano-channel. A study carried out with the participation of the International School for Advanced Studies ...

Сalculations with nanoscale smart particles

Aug 19, 2014

Researchers from the Institute of General Physics of the Russian Academy of Sciences, the Institute of Bioorganic Chemistry of the Russian Academy of Sciences and MIPT have made an important step towards ...

Nanostructure enlightening dendrite-free metal anode

Aug 19, 2014

Graphite anodes have been widely used for lithium ion batteries (LIBs) during the past two decades. The replacement of metallic lithium with graphite enables safe and highly efficient operation of LIBs, however, ...

Bacterial nanowires: Not what we thought they were

Aug 18, 2014

For the past 10 years, scientists have been fascinated by a type of "electric bacteria" that shoots out long tendrils like electric wires, using them to power themselves and transfer electricity to a variety ...

User comments : 0