Researchers Unlock Mechanism Creating Jigsaw Puzzle-Like Plant Cells

Mar 10, 2005
Arabidopsis leaf microtubules

Researchers at the University of California, Riverside have unlocked the molecular give and take that allows cells in thin structures such as leaves to develop in a jigsaw-like pattern, providing the leaf a surprising degree of strength. The findings were published in today’s edition of the journal Cell.

Image: Arabidopsis leaf microtubules

Zhenbiao Yang, a professor of plant cell biology at the UCR’s Center for Plant Cell Biology and Institute for Integrative Genome Biology, worked with a team of researchers which included Geoffrey Wasteneys from the University of British Columbia, Vancouver; fellow UCR colleagues Ying Fu, Ying Gu, and Zhiliang Zheng.

The findings, described in a paper titled “Arabidipsis Interdigitating Cell Growth Requires Two Antagonistic Pathways with Opposing Action on Cell Morphogenesis,” explained a complicated and coordinated series of chemical interactions in a group of cellular proteins, known as GTPases (guanosine triphosphatases) that act as molecular switches, which regulate how plant cells grow into interlocking patterns resembling jigsaw puzzle pieces.

These proteins tell one part of a cell to grow outward while telling its neighbor to recede or indent itself in a finely tuned biological dance. The results are structures that, despite their delicate appearance and slenderness, provide the strength necessary to allow the plant to grow and thrive.

The findings point out that these distinct signals play a critical role in the development of leaf cell walls and leaf structures in a controlled and ordered way and that genetically over expressing one or the other leads to cells lacking the interlocking jigsaw puzzle appearance.

While the researchers unlocked a fascinating mechanism of biochemical crosstalk that coordinates cells into tissues, a deeper understanding of how plant cells chemically talk to each other to grow or recede in an ordered way remains unclear.

Source: University of California, Riverside

Explore further: Power can corrupt even the honest

add to favorites email to friend print save as pdf

Related Stories

Unlocking long-hidden mechanisms of plant cell division

Sep 25, 2014

Along with copying and splitting DNA during division, cells must have a way to break safely into two viable daughter cells, a process called cytokinesis. But the molecular basis of how plant cells accomplish ...

Discovery opens doors to building better plants

Sep 25, 2014

(Phys.org) —The survival of the vast majority of plants, including those that people rely on for food, depends on their ability to build strong but flexible cell walls. A key component of these walls is ...

Recommended for you

Power can corrupt even the honest

1 hour ago

When appointing a new leader, selectors base their choice on several factors and typically look for leaders with desirable characteristics such as honesty and trustworthiness. However once leaders are in power, can we trust ...

Learning at 10 degrees north

1 hour ago

Secluded beaches, calypso music and the entertaining carnival are often what come to mind when thinking of the islands of Trinidad and Tobago. But Dal Earth Sciences students might first consider Trinidad's ...

How to find the knowns and unknowns in any research

3 hours ago

Have you ever felt overloaded by information? Ever wondered how to make sense of claims and counter-claims about a topic? With so much information out there on many different issues, how is a person new to ...

Minorities energize US consumer market, according to report

3 hours ago

The buying power of minority groups in the U.S. has reached new heights and continues to outpace cumulative inflation, according to the latest Multicultural Economy Report from the Selig Center for Economic Growth at the ...

User comments : 0