The Promise of Terahertz

Jan 16, 2005
Gwyn Williams holding an accelerator component inside JLab's FEL

Terahertz (THz) light may provide stunning breakthroughs in areas as diverse as national security, medical imaging and communications technology. But it's largely been ignored until recently, because there wasn't a terahertz light source bright enough for these applications. Now the Free-Electron Laser (FEL) at DOE's Jefferson Lab (JLab) is producing 100 Watts of THz light for scientific studies -- nearly 100,000 times brighter than THz light produced anywhere else.

Image: Gwyn Williams holding an accelerator component inside JLab's FEL.

Terahertz light is a little-studied realm of the electromagnetic spectrum between microwave and infrared light. Also known as t-rays, terahertz light has a wavelength between 3 millimeters and .003 millimeters; and though just about everything in the universe emits them, humans can neither see nor feel these ubiquitous t-rays.

FEL Basic Research Program Manager Gwyn Williams says scientists are excited about t-rays because they can penetrate many forms of matter and are non-ionizing (don't harm living tissue at modest powers). That means they may provide medical images that are better and safer than x-rays, such as a scanner that can instantly diagnose skin cancer. They could also be used for non-invasive airport screening, spotting weapons concealed in clothing.

Built with JLab's expertise in SRF technology, the FEL is the world's most powerful tunable laser. As electrons used to create the laser beam are steered from the linear accelerator around a curve to a wiggler where the laser beam is produced, the electrons give off t-rays. These t-rays can then be routed into a lab for research. “Every time there's an electron beam, we get terahertz,” Williams says. The project is funded by the U.S. Army Night Vision and Electronic Sensors Directorate.

Terahertz research can also extend JLab's mission of studying the structure of matter. For instance, Williams says t-rays can cause individual proteins to vibrate at specific frequencies, revealing structure. “It's also fundamental physics. But instead of looking at the atomic nucleus, we're looking at how materials work at the atomic level.”

Source: DOE Pulse

Explore further: Researchers discover low-grade nonwoven cotton picks up 50 times own weight of oil

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Study finds physical link to strange electronic behavior

4 minutes ago

Scientists have new clues this week about one of the baffling electronic properties of the iron-based high-temperature superconductor barium iron nickel arsenide. A Rice University-led team of U.S., German ...

Refocusing research into high-temperature superconductors

12 hours ago

Below a specific transition temperature superconductors transmit electrical current nearly loss-free. For the best of the so-called high-temperature superconductors, this temperature lies around -180 °C – a temperature ...

MRI for a quantum simulation

18 hours ago

Magnetic resonance imaging (MRI), which is the medical application of nuclear magnetic resonance spectroscopy, is a powerful diagnostic tool. MRI works by resonantly exciting hydrogen atoms and measuring ...

50-foot-wide Muon g-2 electromagnet installed at Fermilab

18 hours ago

One year ago, the 50-foot-wide Muon g-2 electromagnet arrived at the U.S. Department of Energy's Fermi National Accelerator Laboratory in Illinois after traveling 3,200 miles over land and sea from Long Island, ...

User comments : 0