The Promise of Terahertz

Jan 16, 2005
Gwyn Williams holding an accelerator component inside JLab's FEL

Terahertz (THz) light may provide stunning breakthroughs in areas as diverse as national security, medical imaging and communications technology. But it's largely been ignored until recently, because there wasn't a terahertz light source bright enough for these applications. Now the Free-Electron Laser (FEL) at DOE's Jefferson Lab (JLab) is producing 100 Watts of THz light for scientific studies -- nearly 100,000 times brighter than THz light produced anywhere else.

Image: Gwyn Williams holding an accelerator component inside JLab's FEL.

Terahertz light is a little-studied realm of the electromagnetic spectrum between microwave and infrared light. Also known as t-rays, terahertz light has a wavelength between 3 millimeters and .003 millimeters; and though just about everything in the universe emits them, humans can neither see nor feel these ubiquitous t-rays.

FEL Basic Research Program Manager Gwyn Williams says scientists are excited about t-rays because they can penetrate many forms of matter and are non-ionizing (don't harm living tissue at modest powers). That means they may provide medical images that are better and safer than x-rays, such as a scanner that can instantly diagnose skin cancer. They could also be used for non-invasive airport screening, spotting weapons concealed in clothing.

Built with JLab's expertise in SRF technology, the FEL is the world's most powerful tunable laser. As electrons used to create the laser beam are steered from the linear accelerator around a curve to a wiggler where the laser beam is produced, the electrons give off t-rays. These t-rays can then be routed into a lab for research. “Every time there's an electron beam, we get terahertz,” Williams says. The project is funded by the U.S. Army Night Vision and Electronic Sensors Directorate.

Terahertz research can also extend JLab's mission of studying the structure of matter. For instance, Williams says t-rays can cause individual proteins to vibrate at specific frequencies, revealing structure. “It's also fundamental physics. But instead of looking at the atomic nucleus, we're looking at how materials work at the atomic level.”

Source: DOE Pulse

Explore further: X-rays probe LHC for cause of short circuit

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

New insights found in black hole collisions

Mar 27, 2015

New research provides revelations about the most energetic event in the universe—the merging of two spinning, orbiting black holes into a much larger black hole.

X-rays probe LHC for cause of short circuit

Mar 27, 2015

The LHC has now transitioned from powering tests to the machine checkout phase. This phase involves the full-scale tests of all systems in preparation for beam. Early last Saturday morning, during the ramp-down, ...

Swimming algae offer insights into living fluid dynamics

Mar 27, 2015

None of us would be alive if sperm cells didn't know how to swim, or if the cilia in our lungs couldn't prevent fluid buildup. But we know very little about the dynamics of so-called "living fluids," those ...

First glimpse inside a macroscopic quantum state

Mar 27, 2015

In a recent study published in Physical Review Letters, the research group led by ICREA Prof at ICFO Morgan Mitchell has detected, for the first time, entanglement among individual photon pairs in a beam ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.