Probe opens a new window to interstellar space

Jan 16, 2005

Taking stock of the stuff between the stars - the all-important dust and gases that are the building blocks of new stars - has never been easy.
The interstellar medium, as scientists know it, is a murky, nebulous place that defies easy measurement. Yet probing the space between the stars and the star-building materials that reside there is increasingly important as astrophysicists seek to add precious detail to their pictures of how stars are born, live and die.

Now, with help from a novel new device, a team of University of Wisconsin-Madison astrophysicists has successfully developed a method for sampling the interstellar medium, specifically to take the temperature of and explore the pockets of ionized oxygen interspersed between the stars of the Milky Way.

"This is a first for studies of our galaxy," says Ron Reynolds, a UW-Madison professor of astronomy and an authority on the chemical soup of elements that permeates the space between the stars.

With colleagues John Harlander of St. Cloud State University and Edwin Mierkiewicz, UW-Madison physics Professor Fred Roesler constructed and deployed a new type of instrument capable of sampling wide swaths of the sky and exploring the vast clouds of ionized oxygen that well up from the plane of the galaxy. The new device was built with support from the National Science Foundation (NSF).

Data from the first observations using the new spectrometer, which is attached to a small telescope at UW-Madison's Pine Bluff Observatory, were presented by Merikiewicz here today (Jan. 13, 2005) at a meeting of the American Astronomical Society (AAS).

The new observations, taken by Mierkiewicz during the past year, reveal enormous chimneys of ionized gas that rise from the galactic plane into the far corners of the Milky Way.

"The galaxy seems to be full of channels or chimneys of ionized hydrogen, oxygen and nitrogen gas," says Reynolds. "The source is down in the muck where stars are born, but these channels seem to extend into the nooks and crannies of the galaxy."

That discovery, according to Mierkiewicz and Roesler, is intriguing because it provides insight not only to the patchwork of elements that make up the interstellar medium, but also to a class of rare stars that seems to be primarily responsible for the heating and churning that creates the chimneys of gas.

The stellar culprits, known as "O stars," are the most massive and luminous of stars, shining as much as a million times brighter than the sun.

"O stars are the only known stars that can create that much ionization," says Reynolds. "These are very rare stars - one in 10 million stars is an O star - but we see that they have a large influence on the interstellar medium. At this point, if there were other objects creating that much ionization, we'd know about them."

The picture that is emerging, according to Roesler, is that the O stars, which tend to occur in clusters near stellar nurseries, act as galactic blenders of sorts: "They are responsible for the ionization - the stripping of electrons from atoms - and the stirring up of the oxygen."

The Spatial Heterodyne Spectrometer, the new spectrometer developed by the Wisconsin team, looks at ultraviolet light, which is invisible to the unaided eye, but is laden with information for astrophysicists. The new technique, says Mierkiewicz, is especially useful as a temperature probe, and gives scientists a new way to take the temperature of the invisible clouds of gas that permeate space.

Teasing out the details of the interstellar medium is important, the scientists say, because each new finding helps fill in the picture of the life cycle of stars and, ultimately, of galaxies like the Milky Way.

In addition to Mierkiewicz, Roesler, Harlander and Reynolds, K.P. Jaehnig of UW-Madison contributed to the work presented at the AAS meeting. The new Wisconsin spectrometer was developed with support from NSF's Advanced Technology Instrumentation Program.

Source: University of Wisconsin-Madison

Explore further: Venus Express spacecraft, low on fuel, does delicate dance above doom below

add to favorites email to friend print save as pdf

Related Stories

Space: The final frontier in silicon chemistry

Nov 11, 2014

Silicon, which is one of the most common elements in the Earth's crust, is also sprinkled abundantly throughout interstellar space. The only way to identify silicon-containing molecules in the far corners ...

Image: Hubble catches a dusty spiral in Virgo

Oct 13, 2014

This magnificent new image taken with the NASA/ESA Hubble Space Telescope shows the edge-on spiral galaxy NGC 4206, located about 70 million light-years away from Earth in the constellation of Virgo.

Exploring the cosmic X-ray background

Sep 12, 2014

You are likely familiar with the cosmic microwave background. This background is a thermal remnant of the big bang. Because of the expansion of the universe, this remnant energy has a temperature of about ...

Recommended for you

Orion on track at T MINUS 1 Week to first blastoff

4 hours ago

At T MINUS 1 Week on this Thanksgiving Holiday, all launch processing events remain on track for the first blast off of NASA's new Orion crew vehicle on Dec. 4, 2014 which marks the first step on the long ...

Staying warm: The hot gas in clusters of galaxies

6 hours ago

Most galaxies lie in clusters, groupings of a few to many thousands of galaxies. Our Milky Way galaxy itself is a member of the "Local Group," a band of about fifty galaxies whose other large member is the ...

Bad weather delays Japan asteroid probe lift off

10 hours ago

Bad weather will delay the launch of a Japanese space probe on a six-year mission to mine a distant asteroid, just weeks after a European spacecraft's historic landing on a comet captivated the world.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.