Carbon Nanotube 'Shock Absorbers' Excel at Dampening Vibration

Jan 12, 2005
Carbon Nanotube 'Shock Absorbers' Excel at Dampening Vibration

Research on a new class of nanostructured materials used to reduce vibrations in mechanical equipment and electronic devices, being developed by a team of scientists at Rensselaer Polytechnic Institute, will be featured in Nature Materials.

This image shows clusters of the carbon-nanotube vibration-dampening material. Credit: Nikhil Koratkar, Rensselaer Polytechnic Institute.

“The nanoscale building blocks we have developed have both micro and macro applications,” said Nikhil Koratkar, assistant professor of mechanical, aerospace, and nuclear engineering at Rensselaer. “The new systems reduce and control vibrations within structures and will benefit the performance, safety, and reliability of future manufacturing equipment, sensitive laboratory equipment, and everyday electronic devices.”

The Rensselaer research team, led by Koratkar, added carbon nanotube fillers to traditional vibration reduction materials to enhance their energy dissipation capability. Adding large quantities of nanoscale fillers increases the amount of surface area, and thereby increases frictional sliding that occurs at the filler-to-filler interface. The result is a decrease in vibrations.

In 2004, Koratkar received a National Science Foundation (NSF) Faculty Early Career Development Award (CAREER) to fund the development of these new materials. Additional Rensselaer researchers on the project include Pulickel Ajayan, professor of materials science and engineering; Pawel Keblinksi, associate professor of materials science and engineering; and Jonghwan Suhr, a doctoral student in mechanical, aerospace, and nuclear engineering.

The research is available in the Nature Materials journal online, and will be published in an upcoming print edition of the journal.

Source: Rensselaer Polytechnic Institute

Explore further: New technique for exploring structural dynamics of nanoworld

Related Stories

Graphene battery demonstrated to power an LED

Mar 16, 2012

(PhysOrg.com) -- Scientists in Hong Kong have reported, in ArXiv, their experiments to make a graphene battery that they say generates an electrical current by drawing on the ambient thermal energy in the sol ...

Recommended for you

Two-dimensional semiconductor comes clean

Apr 27, 2015

In 2013 James Hone, Wang Fong-Jen Professor of Mechanical Engineering at Columbia Engineering, and colleagues at Columbia demonstrated that they could dramatically improve the performance of graphene—highly ...

Weighing and imaging molecules one at a time

Apr 27, 2015

Building on their creation of the first-ever mechanical device that can measure the mass of individual molecules, one at a time, a team of Caltech scientists and their colleagues have created nanodevices ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.