Huygens sets off with correct spin and speed

Jan 11, 2005
Huygens Separation

On Christmas Day 2004, the Cassini spacecraft flawlessly released ESA’s Huygens probe, passing another challenging milestone for Cassini-Huygens mission. But, with no telemetry data from Huygens, how do we know the separation went well?
At 3:00 CET on 25 December, the critical sequence loaded into the software on board Cassini was executed and, within a few seconds, Huygens was sent on its 20-day trip towards Titan. As data from Cassini confirm, the pyrotechnic devices were fired to release a set of three loaded springs, which gently pushed Huygens away from the mother spacecraft. The probe was expected to be released at a relative velocity of about 0.35 metres per second with a spin rate of about 7.5 revolutions per minute.

Telemetry data from Cassini confirming the separation were collected by NASA’s Deep Space Network stations in Madrid, Spain, and Goldstone, California, when the telemetry playback signal from Cassini eventually reached the Earth.

However, these data showed only that the Cassini systems had worked, and that the Cassini ‘attitude perturbation’ (how Cassini moved in reaction to the probe’s release) were as expected. Within hours, the preliminary analysis of this data confirmed that Huygens was on the expected trajectory and spinning within the expected range. The spin imparted to Huygens is vitally important to ensure that the probe remains in a stable attitude and on course when it enters Titan’s atmosphere. So how could we check the spin rate was correct?

When the Huygens probe was being designed more than 10 years ago, it was required that the probe had to be magnetically ‘clean’ when switched off, meaning that any residual permanent magnetic fields must not interfere with the sensitive Cassini magnetometers. Later, when the probe was built, it was found that there was still a weak magnetic field produced, but within acceptable limits for Cassini’s magnetometer sensors.

However, because magnetic fields have a ‘direction’ as well as a strength, and this weak field was slightly off-centre, it effectively gave the probe a ‘left’ and a ‘right’ side (it behaves like a small magnet with a north and south pole). With the implication being that if you can detect this magnetic field, then you can also detect how it is rotating.

Following an initial suggestion by Jean-Pierre Lebreton, the Huygens Project Scientist, scientists on the Cassini Dual Technique Magnetometer (MAG) team, from Imperial College, London, and Braunschweig, confirmed that their instrument should be able to detect this small rotating magnetic field and plans were put in place to measure this during the probe release period.

Magnetometers are direct-sensing instruments that detect and measure both the strength and direction of magnetic fields in the vicinity of the instrument. The Cassini MAG is measuring these fields while Cassini is in orbit around Saturn as well as during the close Titan encounters. But, just after separation on 25 December, the MAG scientists detected fluctuations in the magnetic field around Cassini that could only have come from Huygens rotating and moving away.

Professor Michele Dougherty, Principal Investigator for MAG, said, “What was observed by MAG just after the probe separation on 25 December 2004, were weak but clear fluctuations in both magnetic sensors which reside on the 11-metre magnetometer boom. These fluctuations were a clear indication of the Huygens probe moving away from the Cassini orbiter. This signature confirmed the spin rate of the probe at 7.5 revolutions per minute, the ideal rate which was predicted, and that Huygens is well on its way to Titan.”

Former MAG Principal Investigator David Southwood, who is now the Director of Science at ESA, said, “Detecting the spin was immensely reassuring - not only did it show Huygens was rotating correctly, but also because the spin is directly related to the departure velocity, that Huygens was headed off at the right speed. It was really great to do it with an instrument I knew so well.”

Source: ESA

Explore further: Bright points in Sun's atmosphere mark patterns deep in its interior

add to favorites email to friend print save as pdf

Related Stories

Cassini captures familiar forms on Titan's dunes

Apr 08, 2014

(Phys.org) —The moons of our Solar System are brimming with unusual landscapes. However, sometimes they look a little more familiar, as in this new radar image from the Cassini orbiter. The image shows ...

Mystery of the missing waves on Titan

Jul 23, 2013

One of the most shocking discoveries of the past 10 years is how much the landscape of Saturn's moon Titan resembles Earth. Like our own blue planet, the surface of Titan is dotted with lakes and seas; it ...

Cassini sees Titan cooking up smog

Feb 05, 2013

(Phys.org)—A paper published this week using data from NASA's Cassini mission describes in more detail than ever before how aerosols in the highest part of the atmosphere are kick-started at Saturn's moon ...

Cassini spots mini Nile River on Saturn moon Titan

Dec 12, 2012

(Phys.org)—The international Cassini mission has spotted what appears to be a miniature extraterrestrial version of the Nile River: a river valley on Saturn's moon Titan that stretches more than 400 km ...

Rock and Roll: Titan's Gem Tumbler

May 11, 2010

(PhysOrg.com) -- It appears flash flooding has paved streambeds in the Xanadu region of Saturn's moon Titan with thousands of sparkling crystal balls of ice, according to scientists with NASA's Cassini spacecraft. ...

Recommended for you

Astronauts to reveal sobering data on asteroid impacts

18 hours ago

This Earth Day, Tuesday, April 22, three former NASA astronauts will present new evidence that our planet has experienced many more large-scale asteroid impacts over the past decade than previously thought… ...

Rosetta instrument commissioning continues

19 hours ago

We're now in week four of six dedicated to commissioning Rosetta's science instruments after the long hibernation period, with the majority now having completed at least a first initial switch on.

Astronaut salary

19 hours ago

Talk about a high-flying career! Being a government astronaut means you have the chance to go into space and take part in some neat projects—such as going on spacewalks, moving robotic arms and doing science ...

User comments : 0

More news stories

Cosmologists weigh cosmic filaments and voids

(Phys.org) —Cosmologists have established that much of the stuff of the universe is made of dark matter, a mysterious, invisible substance that can't be directly detected but which exerts a gravitational ...

Hubble image: A cross-section of the universe

An image of a galaxy cluster taken by the NASA/ESA Hubble Space Telescope gives a remarkable cross-section of the Universe, showing objects at different distances and stages in cosmic history. They range ...

Male monkey filmed caring for dying mate (w/ Video)

(Phys.org) —The incident was captured by Dr Bruna Bezerra and colleagues in the Atlantic Forest in the Northeast of Brazil.  Dr Bezerra is a Research Associate at the University of Bristol and a Professor ...