Novel Zigzag Shape Gives Sensors Magnetic Appeal

Jan 05, 2005
The graphic above shows how the direction of magnetization within a NIST zigzag magnetic sensor follows the shape of the device

Scientists at the National Institute of Standards and Technology (NIST) have designed tiny magnetic sensors in a "zigzag" shape that are simpler in design and likely will be cheaper to make than conventional magnetic sensors used in portable devices. The new sensors could someday be used to measure magnetic fields in applications such as compasses, weapons detection, medicine and non-destructive evaluation of structural materials.
Described in the Dec. 13, 2004, issue of Applied Physics Letters,* the NIST sensors are made of a thin film of nickel and iron and are 35 micrometers long and 5 micrometers wide, with nanoscale design elements at the edges.

The graphic above shows how the direction of magnetization within a NIST zigzag magnetic sensor follows the shape of the device. The green and orange areas of the sensors act like tiny bar magnets with their north and south poles at a 45-degree angle to the centerline of the sensor.

The zigzag design produces the equivalent of many tiny bar magnets oriented with their north and south poles at a 45-degree angle to the centerline of the sensor (see image above). The device senses magnetic fields using a small electrical current sent down the centerline. Tiny changes in the magnetic field surrounding the sensor—such as when a steel weapon passes near it—will increase the resistance to the current and will be detected as an increase in voltage.

Portable magnetic sensors typically include multiple aluminum strips that alternate diagonally across the sensor. The new zigzag sensors are expected to produce clearer signals (less electronic "noise") by confining the current to the center of the device and by eliminating edge imperfections that can result in nanoscale magnetic fluctuations.

The project is part of an interdisciplinary NIST effort to design nanoscale sensors with improved detection levels. NIST scientists experimented with sensor width, length and other dimensions to achieve the desired performance. Engineering of the sensors was supported by theoretical work using NIST-developed imaging and modeling tools.

*F.C.S. da Silva, W.C. Uhlig, A.B. Kos, S. Schima, J. Aumentado, J. Unguris, and D.P. Pappas. Zigzag-shaped magnetic sensors. Applied Physics Letters, Vol. 85, pp. 6025-6027, Dec. 13, 2004.


Explore further: Finding faster-than-light particles by weighing them

add to favorites email to friend print save as pdf

Related Stories

Better diagnostic imaging for traumatic brain injuries

Oct 27, 2014

Image-calibration technology designed and developed by scientists at the National Institute of Standards and Technology (NIST) in collaboration with the National Cancer Institute and the Radiological Society ...

Ion duet offers tunable module for quantum simulator

Aug 06, 2014

Physicists at the National Institute of Standards and Technology (NIST) have demonstrated a pas de deux of atomic ions that combines the fine choreography of dance with precise individual control.

Physicists pay homage to the SQUID at 50

Mar 13, 2014

From humble beginnings in a series of accidental discoveries, SQUIDs have invaded and enhanced many areas of science and medicine, thanks, in part, to the National Institute of Standards and Technology (NIST).

Recommended for you

Finding faster-than-light particles by weighing them

Dec 26, 2014

In a new paper accepted by the journal Astroparticle Physics, Robert Ehrlich, a recently retired physicist from George Mason University, claims that the neutrino is very likely a tachyon or faster-than-light par ...

Controlling core switching in Pac-man disks

Dec 24, 2014

Magnetic vortices in thin films can encode information in the perpendicular magnetization pointing up or down relative to the vortex core. These binary states could be useful for non-volatile data storage ...

World's most complex crystal simulated

Dec 24, 2014

The most complicated crystal structure ever produced in a computer simulation has been achieved by researchers at the University of Michigan. They say the findings help demonstrate how complexity can emerge ...

Atoms queue up for quantum computer networks

Dec 24, 2014

In order to develop future quantum computer networks, it is necessary to hold a known number of atoms and read them without them disappearing. To do this, researchers from the Niels Bohr Institute have developed ...

New video supports radiation dosimetry audits

Dec 23, 2014

The National Physical Laboratory (NPL), working with the National Radiotherapy Trials Quality Assurance Group, has produced a video guide to support physicists participating in radiation dosimetry audits.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.