Novel Zigzag Shape Gives Sensors Magnetic Appeal

Jan 05, 2005
The graphic above shows how the direction of magnetization within a NIST zigzag magnetic sensor follows the shape of the device

Scientists at the National Institute of Standards and Technology (NIST) have designed tiny magnetic sensors in a "zigzag" shape that are simpler in design and likely will be cheaper to make than conventional magnetic sensors used in portable devices. The new sensors could someday be used to measure magnetic fields in applications such as compasses, weapons detection, medicine and non-destructive evaluation of structural materials.
Described in the Dec. 13, 2004, issue of Applied Physics Letters,* the NIST sensors are made of a thin film of nickel and iron and are 35 micrometers long and 5 micrometers wide, with nanoscale design elements at the edges.

The graphic above shows how the direction of magnetization within a NIST zigzag magnetic sensor follows the shape of the device. The green and orange areas of the sensors act like tiny bar magnets with their north and south poles at a 45-degree angle to the centerline of the sensor.

The zigzag design produces the equivalent of many tiny bar magnets oriented with their north and south poles at a 45-degree angle to the centerline of the sensor (see image above). The device senses magnetic fields using a small electrical current sent down the centerline. Tiny changes in the magnetic field surrounding the sensor—such as when a steel weapon passes near it—will increase the resistance to the current and will be detected as an increase in voltage.

Portable magnetic sensors typically include multiple aluminum strips that alternate diagonally across the sensor. The new zigzag sensors are expected to produce clearer signals (less electronic "noise") by confining the current to the center of the device and by eliminating edge imperfections that can result in nanoscale magnetic fluctuations.

The project is part of an interdisciplinary NIST effort to design nanoscale sensors with improved detection levels. NIST scientists experimented with sensor width, length and other dimensions to achieve the desired performance. Engineering of the sensors was supported by theoretical work using NIST-developed imaging and modeling tools.

*F.C.S. da Silva, W.C. Uhlig, A.B. Kos, S. Schima, J. Aumentado, J. Unguris, and D.P. Pappas. Zigzag-shaped magnetic sensors. Applied Physics Letters, Vol. 85, pp. 6025-6027, Dec. 13, 2004.


Explore further: New filter could advance terahertz data transmission

add to favorites email to friend print save as pdf

Related Stories

Better diagnostic imaging for traumatic brain injuries

Oct 27, 2014

Image-calibration technology designed and developed by scientists at the National Institute of Standards and Technology (NIST) in collaboration with the National Cancer Institute and the Radiological Society ...

Ion duet offers tunable module for quantum simulator

Aug 06, 2014

Physicists at the National Institute of Standards and Technology (NIST) have demonstrated a pas de deux of atomic ions that combines the fine choreography of dance with precise individual control.

Physicists pay homage to the SQUID at 50

Mar 13, 2014

From humble beginnings in a series of accidental discoveries, SQUIDs have invaded and enhanced many areas of science and medicine, thanks, in part, to the National Institute of Standards and Technology (NIST).

Recommended for you

New filter could advance terahertz data transmission

Feb 27, 2015

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

Feb 27, 2015

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

Precision gas sensor could fit on a chip

Feb 27, 2015

Using their expertise in silicon optics, Cornell engineers have miniaturized a light source in the elusive mid-infrared (mid-IR) spectrum, effectively squeezing the capabilities of a large, tabletop laser onto a 1-millimeter ...

A new X-ray microscope for nanoscale imaging

Feb 27, 2015

Delivering the capability to image nanostructures and chemical reactions down to nanometer resolution requires a new class of x-ray microscope that can perform precision microscopy experiments using ultra-bright ...

New research signals big future for quantum radar

Feb 26, 2015

A prototype quantum radar that has the potential to detect objects which are invisible to conventional systems has been developed by an international research team led by a quantum information scientist at the University ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.