Tiny Holes Offer Giant Glimpse into Future

Dec 24, 2004

Miniscule holes in a single molecule detector being developed at the University of Arkansas may hold the key to enormous advancements in the medical and biological sciences.
Jiali Li, an assistant professor of physics, recently received a $500,000 grant from the National Institutes of Health to further her research into nanopores. Li, the first UA physicist to receive NIH funding, is fine-tuning a microscope-like device she and her former colleagues invented known as the single-molecule nanopore detector.

Nanopores are essentially holes as tiny as 30 atoms across that exist within all living systems. They act as sensitive membrane channels through which cells sustain life by breathing molecules in and out.

"Not many people study solid-state nanopores," explained Li, who began the project as part of postdoctoral research at Harvard University. "My lab at UA, Dr. [Jene] Golovchenko and Dr. [ Daniel ]Branton's lab at Harvard, and maybe one more lab in Europe [which is pursuing a different aspect of nanopores research].

"Before, we didn't have the tools to look at a single molecule in motion; scientists had to look at thousands of millions of them together to get important information. This is a new tool through which we can look at them one at a time."

With the nanopore "microscope," Li and her research group can look not only at a single molecule, but can measure the interaction between molecules. Down the road, Li and colleagues hope to be able to identify single molecules that are responsible for illnesses. Doctors, for example, could have inexpensive devices in their offices that could read genetic blueprints quickly and easily. Medications and lifestyle changes could then be prescribed to suit each individual, depending upon their individual DNA makeup.

"If this project is successful, it will have a very big impact in the medical sciences and the biological sciences, because we can study a lot of things we could not study before and can't even study now," Li said.

Source: University of Arkansas

Explore further: Photo-initiated charge separation in nanobiohybrid complex

add to favorites email to friend print save as pdf

Related Stories

Battling superbugs with gene-editing system

21 hours ago

In recent years, new strains of bacteria have emerged that resist even the most powerful antibiotics. Each year, these superbugs, including drug-resistant forms of tuberculosis and staphylococcus, infect ...

Smartgels are thicker than water

Sep 19, 2014

Transforming substances from liquids into gels plays an important role across many industries, including cosmetics, medicine, and energy. But the transformation process, called gelation, where manufacturers ...

Recommended for you

Engineered proteins stick like glue—even in water

21 hours ago

Shellfish such as mussels and barnacles secrete very sticky proteins that help them cling to rocks or ship hulls, even underwater. Inspired by these natural adhesives, a team of MIT engineers has designed ...

Smallest possible diamonds form ultra-thin nanothreads

21 hours ago

For the first time, scientists have discovered how to produce ultra-thin "diamond nanothreads" that promise extraordinary properties, including strength and stiffness greater than that of today's strongest ...

A nanosized hydrogen generator

Sep 20, 2014

(Phys.org) —Researchers at the US Department of Energy's (DOE) Argonne National Laboratory have created a small scale "hydrogen generator" that uses light and a two-dimensional graphene platform to boost ...

User comments : 0