IMEC reports record in tall triple-gate device SRAM cell for 45nm node

Dec 13, 2004

At today’s IEEE International Electron Devices Meeting in San Francisco, IMEC, Europe’s largest independent nanoeelctronics and nanotechnology research center, announced that it had achieved the smallest triple-gate device SRAM cell reported to date. IMEC’s device is a fully working 6-transistor SRAM cell with an area of only 0.314mm2.

The SRAM cell achieves excellent static-noise margin of 240mV at 1.0V operation and shows good functionality down to 0.4V with a symmetric butterfly curve. Further, the cell shows great potential for scaling down to the 32nm node.

Non-planar device architectures such as multigate-FETs (MuGFET) are emerging as candidates for the 45nm node and below due to their improved current density, reduced short-channel effects, and improved gate control compared to conventionally scaled transistors.

The MuGFETs implemented in the SRAM cell distinguish themselves by a tall fin of 70nm, 40nm higher than typically reported so far, resulting in an increased current density. The transistors have a physical gate length of 40nm and 35nm wide fins. A NiSi source/drain has been used to lower access resistance and a Cu/low-k (Black Diamond) metallization finishes the cell.

Mature 193nm lithography with 0.75 NA and reticle enhancement techniques (RET) allowed the patterning of fins, gates and contact holes with 150nm pitch. The cell layout has been optimized taking into account the different reticle (phase shift mask) technologies, illumination possibilities (Quasar or Dipole) and optical proximity corrections for each critical layer. Only uni-directional patterns are used, leading to a truly lithography-friendly design.

Currently, IMEC is pursuing the development of smaller SRAM cells and advanced logic circuits. Metal gates, using standard available materials, have been implemented to allow scaling below the 45nm node. Because of their process complexity, the SRAM cell will be used as a test module in IMEC’s sub-45nm CMOS research platform. This program includes advanced lithography, gate-stack technology, ultra-shallow junctions, silicides and strain, interconnect, cleaning and emerging device programs, and aims to prove the feasibility of the developed technology elements.

Explore further: Apple co-founder to mentor at Australian university

add to favorites email to friend print save as pdf

Related Stories

Extremely fast MRAM data storage within reach

Mar 08, 2011

Magnetic Random Access Memories (MRAM) are the most important new modules on the market of computer storage devices. Like the well known USB-sticks, they store information into static memory, but MRAM offer ...

Low power, programmable cell array demonstrated by NEC

Feb 22, 2011

NEC Corporation announced today the successful demonstration of a low power programmable cell array using a rewritable and nonvolatile solid-electrolyte switch, "NanoBridge," integrated into a 90nm CMOS.

Recommended for you

Tablets, cars drive AT&T wireless gains—not phones

6 hours ago

AT&T says it gained 2 million wireless subscribers in the latest quarter, but most were from non-phone services such as tablets and Internet-connected cars. The company is facing pricing pressure from smaller rivals T-Mobile ...

Twitter looks to weave into more mobile apps

7 hours ago

Twitter on Wednesday set out to weave itself into mobile applications with a free "Fabric" platform to help developers build better programs and make more money.

Blink, point, solve an equation: Introducing PhotoMath

8 hours ago

"Ma, can I go now? My phone did my homework." PhotoMath, from the software development company MicroBlink, will make the student's phone do math homework. Just point the camera towards the mathematical expression, ...

Google unveils app for managing Gmail inboxes

8 hours ago

Google is introducing an application designed to make it easier for its Gmail users to find and manage important information that can often become buried in their inboxes.

User comments : 0