Vest-pocket beamer

Dec 08, 2004
Vest-pocket beamer

The vest-pocket projector could soon become reality. It is based on a tilting micromirror that builds up the picture line by line. The designers of a laboratory prototype have managed to raise its operating speed and resolution to the point where graphics and text are clearly legible.

The future beamer is likely to be no larger than a cube of sugar. Incorporated in a cell phone, the miniature projector would always be on hand – to present PowerPoint slides to a small group of customers or for quickly consulting an online journal. It could provide useful orientation in unfamiliar towns by projecting a street map onto the wall of the nearest building. This may be fantasy, but researchers at the Fraunhofer Institute for Silicon Technology ISIT have already built a demonstrator for a device of this size. It is capable of projecting text and images at a resolution of 320 by 240 pixels. Its chief component is a tilting mirror measuring 1.5 millimeters in diameter, which can be mass-produced on a microchip. The mirror deflects a laser beam by rapidly switching its angle of orientation, building up the picture pixel by pixel.

“The special feature of this mirror is the way it is mounted,” relates Ulrich Hofmann. “It is held by two torsion springs that allow the mirror to be tipped around two axes, in order to deflect the laser beam both horizontally and vertically.” Each time the mirror is moved, the springs pull it back to its original position so quickly that the movement can be repeated, in different directions, several thousand times per second. The electronics have been speeded up to match this high switching frequency. The control circuits take mere nanoseconds to decide how the laser light must be modulated in order to display each pixel with the right brightness. To avoid projection errors, the laser diode is backed up by a duplicate. It directs its beam at the mirror, but the light is reflected back to a photodiode that senses the mirror’s angle of orientation. “If, for instance, the mirror is knocked out of position by unexpected vibrations, the backup laser notices this,” explains Hofmann. “The electronics can then respond by adapting the projection data accordingly.” This feature makes the system insensitive to most external sources of interference.

The demonstrator is still too bulky to fit inside a cell phone. “When we did our tests, the electronics had not yet been miniaturized to that extent,” the physisist says. But that is one of the researchers’ next objectives, alongside increasing the mirror’s switching speed and hence the resolution. Another problem that remains to be resolved is the light source: At present, the only available laser diodes of sufficient durability and brightness all emit red light. Here, the researchers are waiting for their colleagues to find a solution. But their system is already designed to operate with multicolor diodes.

Source: Fraunhofer-Gesellschaft

Explore further: Nintendo launching 'amiibo' with 12 characters

add to favorites email to friend print save as pdf

Related Stories

A mirror with a peephole

Aug 13, 2014

When light shines through air onto water, some of the light usually will be reflected back into the air. But at one specific angle, called the Brewster angle, all of the p-polarized light travels into the ...

SHERLOC to micro-map Mars minerals and carbon rings

Aug 01, 2014

(Phys.org) —An ultraviolet-light instrument on the robotic arm of NASA's Mars 2020 rover will use two types of ultraviolet-light spectroscopy, plus a versatile camera, to help meet the mission's ambitious ...

Levitation just part of the power of pushy light

Jun 02, 2014

Most of the time we take light for granted. It arrives with the sunrise everyday and we turn it on with a flick of a switch every night. It appears to be ephemeral and benign to us humans but there is more ...

Recommended for you

Watching others play video games is the new spectator sport

5 hours ago

As the UK's largest gaming festival, Insomnia, wrapped up its latest event on August 25, I watched a short piece of BBC Breakfast news reporting from the festival. The reporter and some of the interviewees appeared baff ...

Avatars make the Internet sign to deaf people

6 hours ago

It is challenging for deaf people to learn a sound-based language, since they are physically not able to hear those sounds. Hence, most of them struggle with written language as well as with text reading ...

User comments : 0