Combination of SRAM and DRAM Capacitor Technology Enables Error-Free Low-Power-Consumption SRAM

Jun 23, 2004
Renesas SRAM

Renesas Technology Corp. has developed the industry's first SRAM virtually free of soft errors, dubbed "superSRAM", through the development a new type of memory cell combining an SRAM cell with a DRAM capacitor technology. This new SRAM will be applied to, and put into commercial production for, the 16M-bit low-power SRAM for mobile applications. Details will be announced at the 2004 Symposium on VLSI Technology to be held in Hawaii in the United States on June 17 (local time).

Normal SRAM cells comprise six transistors: two CMOS type load MOS transistors, two access MOS transistors, and two driver MOS transistors. In the new superSRAM, the two load MOS transistors are replaced by two TFTs located above the access MOS/driver MOS transistors, and two cylindrical capacitors are stacked on top of the node. This design achieves the industry's smallest memory cell size of 0.98 µm2 for 0.15 µm process SRAM. A sub-1 µm2 cell size, considered to be attainable with 90 nm process nodes, has been realized, and the cell size has been reduced to less than half that of conventional Renesas Technology's 0.15 µm process CMOS type SRAM.
Also, the use of DRAM cylindrical capacitors at the storage nodes has enabled capacitance to be increased compared with normal CMOS type RAM, and provides a structure in which soft errors cannot in effect occur, making it possible to provide highly reliable memory devices.

As with conventional SRAM, information stored in a memory cell is automatically maintained by means of the load transistors and driver transistors, so that there is, of course, no need for refreshing. It makes possible an approximately double-digit improvement in data retention current compared with pseudo-SRAM.

The newly developed superSRAM technology fundamentally solves the problem of soft error tolerance associated with finer SRAM processes. It has opened the way to the implementation of a highly reliable large-capacity SRAM. Following on from the 16M model, there are plans for commercial development of 32M-bit superSRAM during the current fiscal year.

The main features of the technology and product are summarized below.

(1) High soft error tolerance
An approximately 4-digit improvement in the soft error rate compared with Renesas Technology's previous 0.13 µm process 16M-bit low-power SRAM (without ECC circuitry ) has been achieved by providing a cylindrical capacitor, like the type used for DRAM cells, at each memory cell storage node. Alpha ray radiation experiments have confirmed for the first time that the SRAM performance is free of bit defects due to soft errors.
The problem of soft error tolerance, which is a fundamental issue for conventional SRAM, has been solved, enabling highly reliable, high-density SRAM to be realized.

(2) Industry's smallest memory cell size for a 0.15 µm process SRAM
The development of a new type of cell that combines an SRAM cell using TFTs and a DRAM capacitor has resulted in the industry's smallest memory cell size for a 0.15 µm process SRAM: 0.98 µm2. The cell size is less than half that of Renesas Technology's current CMOS-based 0.15 µm process SRAM. It will enable chip size to be greatly reduced and mobile devices to be made smaller.
In addition, a data retention current of less than 1 µA has been achieved. Unlike a pseudo-SRAM that employs DRAM memory cells, the new SRAM cell does not need refresh operations. That allows an approximately double-digit improvement in data retention current compared with a pseudo-SRAM, for lower power consumption in mobile applications.

(3) Fabrication possible using existing 0.15 µm process
Higher performance and a smaller cell area have been achieved without using special processes. Fabrication is possible using existing process technologies, enabling early introduction to the market.

More information at: www.renesas.com/


Explore further: Hoverbike drone project for air transport takes off

add to favorites email to friend print save as pdf

Related Stories

Jeju Island is a live volcano, study reveals

29 minutes ago

In Jeju, a place emerging as a world-famous vacation spot with natural tourism resources, a recent study revealed a volcanic eruption occurred on the island. The Korea Institute of Geoscience and Mineral ...

Has Antarctic sea ice expansion been overestimated?

1 hour ago

New research suggests that Antarctic sea ice may not be expanding as fast as previously thought. A team of scientists say much of the increase measured for Southern Hemisphere sea ice could be due to a processing ...

Recommended for you

Economical and agile offshore construction ship

1 hour ago

Siemens is currently installing the power supply and propulsion systems into a new multi-purpose offshore construction ship for Toisa Ltd. The ship, which is being built by the Korean company Hyundai Heavy ...

Software provides a clear overview in long documents

1 hour ago

In the future, a software will help users better analyze long texts such as the documents for calls for bids, which are often more than one thousand pages long. Experts at Siemens' global research unit Corporate ...

User comments : 0