MIT, Columbia begin new energy experiment

Dec 06, 2004

Half-ton levitating ring is key to work

MIT and Columbia University students and researchers have begun operation of a novel experiment that confines high-temperature ionized gas, called plasma, using the strong magnetic fields from a half-ton superconducting ring inside a huge vessel reminiscent of a spaceship. The experiment, the first of its kind, will test whether nature's way of confining high-temperature gas might lead to a new source of energy for the world.

First results from the Levitated Dipole Experiment (LDX) were presented at a meeting of the American Physical Society the week of Nov. 15. Scientists and students described more than 100 plasma discharges created within the new device, each lasting from 5 to 10 seconds. X-ray spectroscopy and visible photography recorded spectacular images of the hot, confined plasma and of the dynamics of matter confined by strong magnetic force fields.

A dedication for LDX, the United States' newest approach to nuclear fusion, was held in late October. Fusion energy is advantageous because its hydrogen fuel is practically limitless and the resulting energy would be clean and would not contribute to global warming as does the burning of fossil fuels.

Scientists using the LDX experiment will conduct basic studies of confined high-temperature matter and investigate whether the plasma may someday be used to produce fusion energy on Earth. Fusion energy is the energy source of the sun and stars. At high temperature and pressure, light elements like hydrogen are fused together to make heavier elements, such as helium, in a process that releases large amounts of energy.

Powerful magnets, such as the ring in LDX, provide the magnetic fields needed to initiate, sustain and control the plasma in which fusion occurs. Because the shape of the magnetic force fields determines the properties of the confined plasma, several different fusion research experiments are under way throughout the world, including a second experiment at MIT, the Alcator C-Mod, and the HBT-EP experiment at Columbia University.

LDX tackles fusion with a unique approach, taking its cue from nature. The primary confining fields are created by a powerful superconducting ring about the size of a truck tire and weighing more than a half-ton that will ultimately be levitated within a large vacuum chamber. A second superconducting magnet located above the vacuum chamber provides the force necessary to support the weight of the floating coil. The resulting force field resembles the fields of the magnetized planets, such as Earth and Jupiter. Satellites have observed how these fields can confine plasma at hundreds of millions of degrees.

Source: Columbia University Office of Public Affairs

Explore further: Chemist develops X-ray vision for quality assurance

add to favorites email to friend print save as pdf

Related Stories

PPPL studies plasma's role in synthesizing nanoparticles

Jul 22, 2014

DOE's Princeton Plasma Physics Laboratory (PPPL) has received some $4.3 million of DOE Office of Science funding, over three years, to develop an increased understanding of the role of plasma in the synthesis ...

Fusion energy facility promises clean energy

Jul 10, 2014

The search for star power – fusion – has received a major boost with the launch of the Australian Plasma Fusion Research Facility (APFRF) at The Australian National University.

Long-range tunneling of quantum particles

Jun 12, 2014

The quantum tunnel effect manifests itself in a multitude of well-known phenomena. Experimental physicists in Innsbruck, Austria, have now directly observed quantum particles transmitting through a whole ...

The solar wind breaks through the Earth's magnetic field

Jun 10, 2014

Space is not empty. A wind of charged particles blows outwards from the Sun, carrying a magnetic field with it. Sometimes this solar wind can break through the Earth's magnetic field. Researchers at the Swedish ...

Recommended for you

Chemist develops X-ray vision for quality assurance

1 minute ago

It is seldom sufficient to read the declaration of contents if you need to know precisely what substances a product contains. In fact, to do this you need to be a highly skilled chemist or to have genuine ...

The future of ultrashort laser pulses

10 minutes ago

Rapid advances in techniques for the creation of ultra-short laser pulses promise to boost our knowledge of electron motions to an unprecedented level.

IHEP in China has ambitions for Higgs factory

17 hours ago

Who will lay claim to having the world's largest particle smasher?. Could China become the collider capital of the world? Questions tease answers, following a news story in Nature on Tuesday. Proposals for ...

The physics of lead guitar playing

19 hours ago

String bends, tapping, vibrato and whammy bars are all techniques that add to the distinctiveness of a lead guitarist's sound, whether it's Clapton, Hendrix, or BB King.

The birth of topological spintronics

20 hours ago

The discovery of a new material combination that could lead to a more efficient approach to computer memory and logic will be described in the journal Nature on July 24, 2014. The research, led by Penn S ...

User comments : 0