A Pocketful of Uranium: Construction of a Selective Uranium-Binding Protein

Feb 12, 2009

(PhysOrg.com) -- The use of uranium as a nuclear fuel and in weapons increases the risk that people may come into contact with it, and the storage of radioactive uranium waste poses an additional environmental risk. However, radioactivity is not the only problem related to contact with uranium; the toxicity of this metal is generally more dangerous to human health.

Researchers are still looking for simple, effective methods for the sensitive detection and effective treatment of uranium poisoning. Researchers led by Chuan He at the University of Chicago and Argonne National Laboratory (USA) have now developed a protein that binds to uranium selectively and tightly. As reported in the journal Angewandte Chemie, it is based on a bacterial nickel-binding protein.

In oxygen-containing, aqueous environments, uranium normally exists in the form of the uranyl cation (UO22+), a linear molecule made of one uranium atom and two terminal oxygen atoms. The uranyl ion also likes to form coordination complexes. It prefers to surround itself with up to six ligands arranged in a plane around the ion’s “equator”. The research team thus chose to develop a protein that offers the uranyl ion a binding cavity in which it is surrounded by the protein’s side-groups in the manner it prefers.

As a template, the scientists used the protein NikR (nickel-responsive repressor) from E. coli, a regulator that reacts to nickel ions. When NikR is loaded with nickel ions, it binds to a special DNA sequence. This represses transcription of the neighboring genes, which code for proteins involved in nickel uptake. If no nickel is present in the bacteria, NikR does not bind to the DNA.

The nickel ion is located in a binding cavity in which it is surrounded by a square-planar arrangement of binding groups. By using several mutation steps, the researchers generated a new protein that can bind uranium instead of nickel. Only three amino acids had to be changed. In the specially designed cavity, the uranyl group has six binding partners that surround it equatorially. In addition, there are spaces for the two terminal oxygen atoms of uranyl.

This NikR mutant only binds to DNA in the presence of uranyl, not in the presence of nickel or other metal ions. This confirms its selectivity for uranyl and may make it useful for the detection of uranyl and nuclear waste bioremediation. It also represents the first step towards developing potential protein- or peptide-based agents for treatment of uranium poisoning.

More information: Chuan He, University of Chicago, Engineering A Uranyl-Specific Binding Protein from NikR, Angewandte Chemie International Edition, doi: 10.1002/anie.200805262

Provided by Wiley

Explore further: The origins of handedness in life

add to favorites email to friend print save as pdf

Related Stories

Protected areas offer glimmers of hope for wildlife

13 minutes ago

National parks and other protected areas offer hope for threatened species at a time of plunging wildlife numbers, conservationist group WWF said Tuesday, but their success has not been universal.

Samsung rejects claims of Galaxy Note defect

32 minutes ago

Samsung on Wednesday rejected claims that its new oversized smartphone had a defect, after some customers posted pictures of a gap between the frame and display panel.

The wake-up call that sent hearts racing

42 minutes ago

"But as the minutes ticked by, the relaxed attitude of many of us began to dissolve into apprehension. Our levels of adrenaline and worry began to rise."

Recommended for you

The origins of handedness in life

8 hours ago

Handedness is a complicated business. To simply say life is left-handed doesn't even begin to capture the blooming hierarchy of binary refinements it continues to evolve. Over the years there have been numerous ...

Have our bodies held the key to new antibiotics all along?

11 hours ago

As the threat of antibiotic resistance grows, scientists are turning to the human body and the trillion or so bacteria that have colonized us—collectively called our microbiota—for new clues to fighting microbial infections. ...

Characterizing an important reactive intermediate

16 hours ago

An international group of researchers led by Dr. Warren E. Piers (University of Calgary) and Dr. Heikki M. Tuononen (University of Jyväskylä) has been able to isolate and characterize an important chemical ...

Surfaces that communicate in bio-chemical Braille

16 hours ago

A Braille-like method that enables medical implants to communicate with a patient's cells could help reduce biomedical and prosthetic device failure rates, according to University of Sydney researchers.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Soylent
not rated yet Feb 12, 2009
All you have to do to dispose of very mildly radioactive uranium is to convert it into insoluble oxide form and put it back from whence it came.

But why would you ever want to?