Evolution and climate change research advances at Rutgers-Camden

Feb 02, 2009

Charles Darwin may have been born 200 years ago come Feb. 12, but his theory of evolution remains an everyday touchstone for modern biologists. And while the Origin of Species author might not have known the term "global warming," he wouldn't have been surprised that the environment is changing. He would, however, be astonished by the speed at which it's happening today.

"Every species is under temporary permanence," says Bill Saidel, an associate professor of biology at Rutgers University's Camden Campus, where he teaches Animal Behavior and Behavioral Neurobiology. Darwin would have predicted changes in species' habits and even changes in the environment, but the planet's facing changes that are both drastic and unpredictable.

Saidel notes some already observed results of global warming today, like changing avian migration patterns and pH levels in oceans. But how would Darwin begin to determine how every species might respond to climate change? Most likely he'd begin by observing those habitats that are uniquely individual and well-defined.

This approach -- researching one specialized habitat for insight into a larger understanding of evolution -- is how Saidel conducts his own research at Rutgers-Camden. His interest in the exotic African butterfly fish is precisely because it has evolved two retinas in each eye, but only feeds from information derived from one. The fish's highly specialized adaptations, from retina to brain, serve as a model for discerning the circuitry of feeding in all vertebrae whose visual traits aren't as clearly segmented.

"This fish has much to teach us. It has adapted extraordinarily to a single unique environment. Yet, the consequences of a highly adapted species is that any change can be dire," says Saidel.

Dan Shain, associate professor of biology at Rutgers-Camden, also researches highly specialized creatures: worms that thrive in the world's most extreme climates. He studies them for insight into their adaptations and their unique cocoon production processes, which have biomaterial applications. Only the intensely frigid environs Shain once explored in destinations like Alaska aren't as cold anymore.

This summer, the Rutgers-Camden researcher traveled to Denali National Park to observe ice worms, whose glacial habitats make them an ideal indicator species for climate change.

"Ice worms have been around at least a few million years and have been through many ice ages, but the change there now is dramatic," Shain says. "I've been traveling to Alaska for 10 years studying ice worms. The mass of the glaciers is about half of what it was a decade ago."

Disappointed, Shain didn't find new specimens allegedly living in Eldridge Glacier. Even the glaciers he previously identified as housing a plethora of ice worms had sadly receded.

"The number of ice worms is radically down. We think ice worms are getting washed off the glaciers and they don't have the capability to move up the glacier quickly enough," he reports.

The issue of time is crucial to understanding the implications of global warming. Shain calls it "accelerated evolution" and predicts large-scale extinctions that even Darwin couldn't comprehend. Species that can best adapt to this abrupt change will go on and multiply, leaving the world with less of a variety.

"We lose diversity with a rapid change, but always life finds a way. Some kind of life will fill the gap."

Source: Rutgers University

Explore further: Prized sea snail not at risk of extinction, federal officials say

add to favorites email to friend print save as pdf

Related Stories

The Isthmus of Panama: Out of the Deep Earth

Apr 01, 2014

As dates in geologic history go, the formation of the slender land bridge that joins South America and North America is a red-letter one. More than once over the past 100 million years, the two great landmasses ...

Polar ecosystems vulnerable to sunlight

Jul 31, 2013

(Phys.org) —Slight changes in the timing of the annual loss of sea-ice in polar regions could have dire consequences for polar ecosystems, by allowing a lot more sunlight to reach the sea floor.

High planetary tilt lowers odds for life?

Feb 06, 2012

Highly-tilted worlds would have extreme seasons, subjecting life to alternating periods of scorching and subzero temperatures. This could make the development of all but hardiest, simplest creatures a long ...

Recommended for you

Keep dogs and cats safe during winter

Dec 27, 2014

(HealthDay)—Winter can be tough on dogs and cats, but there are a number of safe and effective ways you can help them get through the cold season, an expert says.

Scientists target mess from Christmas tree needles

Dec 26, 2014

The presents are unwrapped. The children's shrieks of delight are just a memory. Now it's time for another Yuletide tradition: cleaning up the needles that are falling off your Christmas tree.

Top Japan lab dismisses ground-breaking stem cell study

Dec 26, 2014

Japan's top research institute on Friday hammered the final nail in the coffin of what was once billed as a ground-breaking stem cell study, dismissing it as flawed and saying the work could have been fabricated.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.