Scientists publish complete genetic blueprint of key biofuels crop

Jan 28, 2009
The rich diversity of Sorghum species is depicted here. Credit: Roy Kaltschmidt, Lawrence Berkeley National Laboratory

Scientists at the U.S. Department of Energy (DOE) Joint Genome Institute (JGI) and several partner institutions have published the sequence and analysis of the complete genome of sorghum, a major food and fodder plant with high potential as a bioenergy crop. The genome data will aid scientists in optimizing sorghum and other crops not only for food and fodder use, but also for biofuels production. The comparative analysis of the sorghum genome appears in the January 29 edition of the journal Nature.

Prized for its drought resistance and high productivity, sorghum is currently the second most prevalent biofuels crop in the United States, behind corn. Grain sorghum produces the same amount of ethanol per bushel as corn while utilizing one-third less water. As the technology for producing "cellulosic" (whole plant fiber-based) biofuels matures, sorghum's rapid growth--rising from eight to 15 feet tall in one season--is likely to make it desirable as a cellulosic biofuels "feedstock."

"This is an important step on the road to the development of cost-effective biofuels made from nonfood plant fiber," said Anna C. Palmisano, DOE Associate Director of Science for Biological and Environmental Research. "Sorghum is an excellent candidate for biofuels production, with its ability to withstand drought and prosper on more marginal land. The fully sequenced genome will be an indispensable tool for researchers seeking to develop plant variants that maximize these benefits."

Plant DNA is often notoriously difficult to analyze because of large sections of repetitive sequence and sorghum was no different. Jeremy Schmutz of the DOE JGI partner HudsonAlpha Institute for Biotechnology (formerly the Stanford Human Genome Center) and John Bowers of the University of Georgia pointed to these complex repetitive regions as accounting for the significant size difference between the rice and sorghum genomes, while also suggesting a common overall genome structure for grasses.

"Sorghum will serve as a template genome to which the code of the other important biofuel feedstock grass genomes--switchgrass, Miscanthus, and sugarcane--will be compared," said Andrew Paterson, the publication's first author and Director of the Plant Genome Mapping Laboratory, University of Georgia.

Scientists and industry officials say that completion of the sorghum genome will aid with sequencing of numerous other related plants, including other key potential bioenergy crops.

"I expect our improved understanding of the sorghum genome to have a major impact on the development of improved bioenergy crops for the emerging biofuels and renewable power industries," said Neal Gutterson, President and Chief Executive Officer of Mendel Biotechnology.

Sorghum's is only the second grass genome to be completely sequenced to date, after rice. With approximately 730 million nucleotides, sorghum's genome is nearly 75 percent larger than the size of rice.

Researchers used the whole genome "shotgun" method of sequencing first pioneered in the Human Genome Project. In this method, short random DNA fragments are partially sequenced and then analyzed by powerful supercomputers to reconstruct the original genome sequence. The repetitive sections and the length of the sorghum genome made assembling this "puzzle" a highly challenging computational problem.

By comparing sorghum's assembled code with rice's, the scientists were able to provide a "reality check" for rice's previously published estimate of protein coding genes.

"We found that over 10,000 proposed rice genes are actually just fragments," said DOE JGI's Dan Rokhsar, the publication's co-corresponding author. "We are confident now that rice's gene count is similar to sorghum's at 30,000, typical of grasses."

Source: DOE/Joint Genome Institute

Explore further: Dairy farms asked to consider breeding no-horn cows

add to favorites email to friend print save as pdf

Related Stories

Designer roots to counter drought

Jul 12, 2011

Recent discoveries by a University of Queensland agricultural scientist provide the basis for custom designing plant roots. Her discovery is already being used by plant breeders to develop drought-resistant ...

Recommended for you

Dairy farms asked to consider breeding no-horn cows

Mar 28, 2015

Food manufacturers and restaurants are taking the dairy industry by the horns on an animal welfare issue that's long bothered activists but is little known to consumers: the painful removal of budding horn ...

Italian olive tree disease stumps EU

Mar 27, 2015

EU member states are divided on how to stop the spread of a disease affecting olive trees in Italy that could result in around a million being cut down, officials said Friday.

China starts relocating endangered porpoises: Xinhua

Mar 27, 2015

Chinese authorities on Friday began relocating the country's rare finless porpoise population in a bid to revive a species threatened by pollution, overfishing and heavy traffic in their Yangtze River habitat, ...

A long-standing mystery in membrane traffic solved

Mar 27, 2015

In 2013, James E. Rothman, Randy W. Schekman, and Thomas C. Südhof won the Nobel Prize in Physiology or Medicine for their discoveries of molecular machineries for vesicle trafficking, a major transport ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.