New Understanding of Manganites: Another Nanoscale Engineering Approach

Jun 05, 2004

LOS ALAMOS, N.M., June 3, 2004 -- University of California researchers working at Los Alamos National Laboratory recently unveiled a new theory explaining the strange coexistence of metallic and insulating phases in the crystals of a mineral called perovskite manganite. The theoretical framework they present could provide a basis for the engineering of nanoscale metallic and insulating phase patterns in manganites. Such phase patterns could be useful in the computer industry's quest to miniaturize computer disk drive heads beyond their current size limitations.

In a paper published in the March 25 issue of the scientific journal Nature, Los Alamos scientists Ken Ahn, Turab Lookman and Alan Bishop theorize that the presence of metallic and insulating phases in perovskite manganite are strain-induced, caused by pressures applied to the mineral's structure lattice during formation. Perovskite manganite, or manganite, is a steel-gray or black mineral that occurs as crystals of manganese ore. Perovskite refers to the cubic crystal form the manganite may take.

According to Lookman, a physicist in the Theoretical Division, a better understanding of the nanoscale structure of manganites is more than simply an academic adventure. "If the computer industry is going to continue to miniaturize electronics beyond silicon's current limitations, it will probably be necessary to look at materials like manganites, where, for example, nanoscale structures such as coexistent metallic and insulating phases can be built within media that are otherwise homogenous," Lookman said.

The evolution of computer drives has been made possible to a significant extent by a better understanding of magnetoresistance in materials. In 1988, a property called "gigantic magnetoresistance" (GMR) was discovered in certain materials that made them useful for creating better magnetic read heads for computer disk drives. In 1994, a more powerful magnetoresistance phenomenon known as "colossal magnetoresistance" (CMR) was discovered in manganite and other materials with perovskite crystalline structure that made them appealing to industry as potential materials for use in a new generation of miniature magnetic read heads for computer disk drives. While GMR-based technologies are now used in most hard drives, CMR has been less widely understood and therefore not been applied.

The Los Alamos discovery could lead to advanced electronic applications of CMR in the future, if the strain-induced metallic and insulating phases can be replicated at nanoscales using electromagnetic radiation, explained Lookman.

The research was funded by DOE's Laboratory-Directed Research and Development (LDRD) program. LDRD funds basic and applied research and development focusing on employee-initiated creative proposals selected at the discretion of the Laboratory Director.

Los Alamos National Laboratory is operated by the University of California for the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy and works in partnership with NNSA's Sandia and Lawrence Livermore national laboratories to support NNSA in its mission.

Los Alamos enhances global security by ensuring the safety and reliability of the U.S. nuclear deterrent, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to defense, energy, environment, infrastructure, health and national security concerns.

Find the original press release here.

Explore further: Scientists come closer to the industrial synthesis of a material harder than diamond

add to favorites email to friend print save as pdf

Related Stories

Deep-sea diver hand offers freedom and feedback

25 minutes ago

Bodyskins and goggles are hardly the solution for divers who need to reach extreme depths. The Atmospheric Dive Suit (ADS) gives them the protection they need. Recently, The Economist detailed a technology ...

Nevada governor enacts Tesla tax break package

1 hour ago

Calling it one of the most important pieces of legislation in Nevada history, Gov. Brian Sandoval has signed into law an unprecedented package of incentives to bring Tesla Motors' $5 billion battery factory ...

Index ranks Japan Asia's most efficient innovator (Update)

1 hour ago

A new index ranks Japan as the most efficient among Asian countries in turning the building blocks of creativity into tangible innovations that benefit their economies and people while Myanmar, Pakistan and Cambodia are least ...

Recommended for you

'Small' transformation yields big changes

17 hours ago

An interdisciplinary team of researchers led by Northeastern University has developed a novel method for controllably constructing precise inter-nanotube junctions and a variety of nanocarbon structures in ...

Study sheds new light on why batteries go bad

Sep 14, 2014

A comprehensive look at how tiny particles in a lithium ion battery electrode behave shows that rapid-charging the battery and using it to do high-power, rapidly draining work may not be as damaging as researchers ...

Moving silicon atoms in graphene with atomic precision

Sep 12, 2014

Richard Feynman famously posed the question in 1959: is it possible to see and manipulate individual atoms in materials? For a time his vision seemed more science fiction than science, but starting with groundbreaking ...

User comments : 0