Microswimmers" make a big splash for improved drug delivery

Jan 12, 2009

They may never pose a challenge to Olympic superstar Michael Phelps, but the "microswimmers" developed by researchers in Spain and the United Kingdom could break a long-standing barrier to improving delivery of medications for cancer and other diseases. They describe the development of tiny, magnetically controlled particles, called "microswimmers," that doctors could use to precisely deliver medicine to diseased tissue. Their report appears in the December 25, 2008 issue of The Journal of Physical Chemistry B.

In the new study, Pietro Tierno and colleagues note that scientists tried for years to develop tiny engines that can move micro and nanomachines through tight spaces, such as blood vessels and lab-on-a chip devices. But existing engines are slow, difficult to maneuver, and must undergo alterations in their shape, chemistry or temperature in order to work. The design of simple, more practical engines to power these tiny, robotic machines remains a major challenge, the researchers say.

The scientists describe a solution — tiny beads, about 1/25,000 of an inch in diameter, made of plastic and magnetic materials. When exposed to a magnetic field, the particles spun like a gyroscope and could be easily directed to move though narrow channels of liquids inside a glass plate, the researchers say. The scientists could control the speed of the "microswimmers" by varying the strength of the magnetic field.

Article: "Magnetically Actuated Colloidal Microswimmers", pubs.acs.org/stoken/presspac/presspac/full/10.1021/jp808354n

Source: ACS

Explore further: Recycling industrial waste water: Scientists discover a new method of producing hydrogen

add to favorites email to friend print save as pdf

Related Stories

The science of anatomy is undergoing a revival

Apr 10, 2014

Only two decades ago, when I was starting my PhD studies at the University of California in Berkeley, there was talk about the death of anatomy as a research subject. That hasn't happened. Instead the science ...

Tiny biomolecular tweezers studying force effect of cells

Apr 03, 2014

A new type of biomolecular tweezers could help researchers study how mechanical forces affect the biochemical activity of cells and proteins. The devices—too small to see without a microscope—use opposing ...

'Nanobionics' aims to give plants super powers

Apr 02, 2014

Plants are an engineering marvel of nature. Fueled by sunlight, they recycle our carbon dioxide waste into fresh oxygen for us to breathe. Plus, they make the world prettier. But, with a little help from us humans, can they ...

Recommended for you

A greener source of polyester—cork trees

3 hours ago

On the scale of earth-friendly materials, you'd be hard pressed to find two that are farther apart than polyester (not at all) and cork (very). In an unexpected twist, however, scientists are figuring out ...

Breakthrough points to new drugs from nature

5 hours ago

Researchers at Griffith University's Eskitis Institute have developed a new technique for discovering natural compounds which could form the basis of novel therapeutic drugs.

World's first successful visualisation of key coenzyme

5 hours ago

Japanese researchers have successfully developed the world's first imaging method for visualising the behaviour of nicotine-adenine dinucleotide derivative (NAD(P)H), a key coenzyme, inside cells. This feat ...

User comments : 0

More news stories

Breakthrough points to new drugs from nature

Researchers at Griffith University's Eskitis Institute have developed a new technique for discovering natural compounds which could form the basis of novel therapeutic drugs.

A greener source of polyester—cork trees

On the scale of earth-friendly materials, you'd be hard pressed to find two that are farther apart than polyester (not at all) and cork (very). In an unexpected twist, however, scientists are figuring out ...

Meteorites yield clues to Martian early atmosphere

(Phys.org) —Geologists who analyzed 40 meteorites that fell to Earth from Mars unlocked secrets of the Martian atmosphere hidden in the chemical signatures of these ancient rocks. Their study, published ...