Progress Toward a Biological Fuel Cell?

Dec 30, 2008

(PhysOrg.com) -- Biological fuel cells use enzymes or whole microorganisms as biocatalysts for the direct conversion of chemical energy to electrical energy. One type of microbial fuel cell uses anodes (positive electrodes) coated with a bacterial film. The fuel consists of a substrate that the bacteria can break down. The electrons released in this process must be transferred to the anode in order to be drawn off as current. But how can the electrons be efficiently conducted from the microbial metabolism that occurs inside a cell to the anode?

Discoveries made by Japanese researchers regarding the electron-transfer mechanism of Shewanella loihica PV-4 suggest an intriguing approach. As reported in the journal Angewandte Chemie, in the presence of iron(III) oxide nanoparticles, these metal-reducing bacteria aggregate into an electrically conducting network.

To meet its energy requirements, our bodies metabolize energy-rich substances. A critical step in this process is the transfer of electrons to oxygen, which enters our bodies when we breathe. Instead of breathing, metal-reducing bacteria that live in subterranean sediments transfer electrons to the iron oxide minerals on which they dwell as the last step of their metabolism. In this process, trivalent iron ions are reduced to divalent ions.

A team led by Kazuhito Hashimoto has investigated how this transfer is carried out in Shewanella loihica. They added the cells to a solution containing very finely divided nanoscopic iron(III) oxide particles and poured the solution into a chamber containing electrodes. A layer of bacteria and iron oxide particles was rapidly deposited onto the indium tin oxide electrodes at the bottom of the chamber. When the cells were “fed” lactate, a current was detected. Electrons from the metabolism of the lactate are thus transferred from the bacteria to the electrode.

Scanning electron microscope images show a thick layer of cells and nanoparticles on the electrode; the surfaces of the cells are completely coated with iron oxide particles. The researchers were able to show that the semiconducting properties of the iron oxide nanoparticles, which are linked to each other by the cells, contribute to the surprisingly high current. The cells act as an electrical connection between the individual iron oxide particles. Cytochromes, enzymes in the outer cell membrane of these bacteria, transfer electrons between the cells and the iron oxide particles without having to overcome much of an energy barrier. The result is a conducting network that even allows cells located far from the electrode to participate in the generation of current.

Paper: Kazuhito Hashimoto, Self-Constructed Electrically Conductive Bacterial Networks, Angewandte Chemie International Edition 2009, 48, No. 3, 508-511, doi: 10.1002/anie.200804750

Provided by Wiley

Explore further: Space-tested fluid flow concept advances infectious disease diagnoses

add to favorites email to friend print save as pdf

Related Stories

Nanoparticles cause cancer cells to self-destruct

Apr 03, 2014

Using magnetically controlled nanoparticles to force tumour cells to 'self-destruct' sounds like science fiction, but could be a future part of cancer treatment, according to research from Lund University ...

The promise and peril of nanotechnology

Mar 26, 2014

Scientists at Northwestern University have found a way to detect metastatic breast cancer by arranging strands of DNA into spherical shapes and using them to cover a tiny particle of gold, creating a "nano-flare" ...

Hot nanoparticles for cancer treatments

Mar 24, 2014

Nanoparticles have a great deal of potential in medicine: for diagnostics, as a vehicle for active substances or a tool to kill off tumours using heat. ETH Zurich researchers have now developed particles ...

Research and applications of iron oxide nanoparticles

Feb 26, 2014

From the mysteries of producing red colors in traditional Japanese Bizen stoneware to iron-oxidizing bacteria for lithium ion batteries, Professor Jun Takada is at the forefront of research on innovative ...

Recommended for you

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

DGBEACH
3 / 5 (1) Dec 31, 2008
What happens when the battery decides that it no longer wishes to be enslaved by us, and that it wants to start a life elsewhere on its own? :-)
jaggspb
5 / 5 (2) Dec 31, 2008
What happens when the battery decides that it no longer wishes to be enslaved by us, and that it wants to start a life elsewhere on its own? :-)


then it gets its own bad sci-fi channel movie?

More news stories

Health care site flagged in Heartbleed review

People with accounts on the enrollment website for President Barack Obama's signature health care law are being told to change their passwords following an administration-wide review of the government's vulnerability to the ...

Airbnb rental site raises $450 mn

Online lodging listings website Airbnb inked a $450 million funding deal with investors led by TPG, a source close to the matter said Friday.