Matrix fragments trigger fatal excitement

Dec 29, 2008
The extracellular matrix thins in mice lacking laminin in the hippocampus (bottom). Credit: Chen, Z.-L., et al. 2008. J. Cell Biol.

Shredded extracellular matrix (ECM) is toxic to neurons. Chen et al. reveal a new mechanism for how ECM demolition causes brain damage. The study will appear in the December 29, 2008 issue of The Journal of Cell Biology.

A stroke or head injury kills large numbers of neurons through a process called excitotoxicity. A surge of the neurotransmitter glutamate jolts receptors such as the kainate receptor and stimulates cell death. Enzymes add to the death toll by chopping up ECM near the injury site. How ECM breakdown takes out neurons was mysterious. The standard view was that neurons perished because they got separated from the ECM as it dissolved.

Chen et al. found otherwise when they engineered mice to lack the ECM component laminin in the hippocampus, a brain region often damaged by stroke or injury. If cells languished after parting from the ECM, the researchers reasoned that mice missing laminin would suffer more damage from excitotoxicity. But when excitotoxicity was spurred with an injection of kainate—a molecule that, like glutamate, activates the kainate receptor—the laminin-lacking mice showed less brain damage. After a dose of diced laminin, however, the mutant mice were vulnerable to kainate, indicating that the fragments are the culprit in cell death.

The researchers discovered that chopped-up ECM kills cells by ramping up production of one subunit of the kainate receptor, known as KA1. They speculate that hiking the amount of KA1 subunits might make the receptor more sensitive and thus more likely to trigger an overreaction by the cell.

Although drugs that obstruct the glutamate receptor slow brain cell death, they can lead to serious cognitive impairment and even coma. The study suggests that drugs that block KA1 might provide an alternative way to save brain cells after stroke or head trauma.

Paper: Chen, Z.-L., et al. 2008. J. Cell Biol. doi:10.1083/jcb.200803107, www.jcb.org

Source: Rockefeller University

Explore further: Biologist reels in data to predict snook production

add to favorites email to friend print save as pdf

Related Stories

Tailored 'activity coaching' by smartphone

1 hour ago

Today's smartphone user can obtain a lot of data about his or her health, thanks to built-in or separate sensors. Researcher Harm op den Akker of the University of Twente (CTIT Institute) now takes this health ...

Chemists tackle battery overcharge problem

1 hour ago

Research from the University of Kentucky Department of Chemistry will help batteries resist overcharging, improving the safety of electronics from cell phones to airplanes.

Operation IceBridge turns five

1 hour ago

In May 2014, two new studies concluded that a section of the land-based West Antarctic ice sheet had reached a point of inevitable collapse. Meanwhile, fresh observations from September 2014 showed sea ice ...

A newborn supernova every night

1 hour ago

Thanks to a $9 million grant from the National Science Foundation and matching funds from the Zwicky Transient Facility (ZTF) collaboration, a new camera is being built at Caltech's Palomar Observatory that ...

New data about marsh harrier distribution in Europe

1 hour ago

The use of ringing recoveries —a conventional method used to study bird migration— in combination with more modern techniques such as species distribution modelling and stable isotope analysis helps to ...

Recommended for you

Team advances genome editing technique

14 hours ago

Customized genome editing – the ability to edit desired DNA sequences to add, delete, activate or suppress specific genes – has major potential for application in medicine, biotechnology, food and agriculture.

User comments : 0