Seeing the unseen with 'super-resolution' fluorescence microscopy

Dec 16, 2008

Thanks to a new "super-resolution" fluorescence microscopy technique, Harvard University researchers have succeeded in resolving the features of cells as miniscule as 20-30 nanometers (nm), an order of magnitude smaller than conventional fluorescence light microscopy images, according to a presentation at the American Society for Cell Biology (ASCB) 48th Annual Meeting, Dec. 13-17, 2008, in San Francisco.

"Super resolution" microscopy techniques enable scientists to visualize cells laterally below 200-300 nm, which is the length scale of most intracellular structures and the level at which the cell gets most of its work done.

Harvard's "super-resolution" technique, developed by Bo Huang, Xioawei Zhuang and colleagues at the university, is called Stochastic Optical Reconstruction Microscopy (STORM).

It is one of several higher-resolution fluorescence microscopy techniques that fundamentally surpass the diffraction "blind spot" of conventional light microscopes.

Because conventional light microscopes cannot resolve two objects closer than half the wavelength of the light, they produce images that appear blurry and overlap no matter how high the magnification.

According to the Harvard researchers, STORM can record light emitted from a single molecule in the sample.

Using probe molecules that can be "photoswitched" between a visible and an invisible state, STORM can determine the position of every molecule of interest and can then compile all the molecules' positions to define a structure.

Huang and colleagues have adapted STORM to study three-dimensional structures and can now visualize a whole cell with an axial resolution of 50-60 nm.

Multicolor imaging also has been achieved by using photoswitchable fluorophores made of combinatorial pairs of various activator dyes and reporter dyes. Multicolor, 3-D STORM is able to visualize detailed interactions between cell organelles and the cytoskeleton.

In brain tissue, the researchers used STORM to reveal the fine details in the synaptic structure of the olfactory system.

Source: American Society for Cell Biology

Explore further: In hot and cold water: The private lives of 'Hoff' crabs revealed

add to favorites email to friend print save as pdf

Related Stories

OSIRIS catches glimpse of Rosetta's shadow

29 minutes ago

Several days after Rosetta's close flyby of comet 67P/Churyumov-Gerasimenko on 14 February 2015, images taken on this day by OSIRIS, the scientific imaging system on board, have now been downlinked to Earth. ...

Music festivals go cleaner, greener

37 minutes ago

Every summer, tens of thousands of people across Australia revel in live outdoor music, staying for a day or pitching their tents for a weekend. When the music dies, however, what's left may be less appealing ...

Cash could be phased out within a decade, says expert

42 minutes ago

The rise of electronic currency will lead to the phasing out of physical cash in Australia within a decade, according to Professor Rabee Tourky, Director of the Australian National University (ANU) Research ...

Recommended for you

The origins of polarized nervous systems

8 hours ago

(Phys.org)—There is no mistaking the first action potential you ever fired. It was the one that blocked all the other sperm from stealing your egg. After that, your spikes only got more interesting. Waves ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.