Single adult stem cell can self renew, repair tissue damage in live mammal

Dec 14, 2008

The first demonstration that a single adult stem cell can self-renew in a mammal was reported at the American Society for Cell Biology (ASCB) 48th Annual Meeting, Dec. 13-17, 2008 in San Francisco.

The transplanted adult stem cell and its differentiated descendants restored lost function to mice with hind limb muscle tissue damage.

The adult stem cells used in the study, conducted at Stanford University, were isolated from a mixed population of satellite cells in the skeletal muscle of mice.

The skeletal adult muscle stem cells (MusSC), which live just under the membrane that surrounds muscle fibers, normally respond to tissue damage by giving rise to progenitor cells that become myoblasts, fusing into myofibers to repair the tissue damage.

The scientists transplanted the MusSC into special immune-suppressed "nude" mice whose muscle satellite cells had been wiped out in a hind limb by irradiation.

The mice would only be able to repair injury if the transplanted MuSC "took." The scientists, Alessandra Sacco and Helen Blau, had genetically engineered the transplanted MusSC to express Pax7 and luciferase proteins. As a result, every transplanted cell glowed under ultraviolet light and was easy to trace.

"To be able to detect the presence of the cells by bioluminescence was really a breakthrough," says Blau. "It taught us so much more. We could see how the cells were responding, and really monitor their dynamics."

Through luminescent imaging as well as quantitative and kinetic analyses, Sacco and Blau tracked each transplanted stem cell as it rapidly proliferated and engrafted its progeny into the irradiated muscle tissue.

The scientists then injured the regenerated tissue, setting off massive waves of muscle cell growth and repair, and subsequently showed that the MuSC and descendents rescued the second animal's lost muscle healing function.

After isolating the luciferase-glowing muscle stem cells from the transplanted animal, the scientists duplicated, or cloned, the cells in the lab. Like the original MuSC, the cloned copies were intact and capable of self-renewal.

"We are thrilled with the results," says Sacco. "It's been known that these satellite cells are crucial for the regeneration of muscle tissue, but this is the first demonstration of self-renewal of a single cell."

The ability to isolate and then transplant skeletal adult muscle stems cells could have a wide impact in treating not only a variety of muscle wasting diseases such as muscular dystrophy but also severe muscle injuries or loss of function from aging and disuse.

In other experiments, the researchers transplanted between 10 and 500 luciferase-tagged MuSC into the leg muscles of mice.

These cells also proliferated and engrafted, forming new myofibers and fusing with injured fibers.

Unlike tumor cells, the transplanted stem cells achieved homeostasis, growing to a stable, constant level and ceasing replication.

After demonstrating that the transplanted stem cells proliferated and fully restored the animal's lost function, Sacco and Blau recovered new stem cells from the transplant with full stem cell potency, meeting the final "gold standard" test for adult multipotent stem cells.

Source: American Society for Cell Biology

Explore further: Scientists solve the case of the red abalone die-off using forensic genomics

add to favorites email to friend print save as pdf

Related Stories

New method increases supply of embryonic stem cells

Jan 27, 2014

A new method allows for large-scale generation of human embryonic stem cells of high clinical quality. It also allows for production of such cells without destroying any human embryos. The discovery is a big step forward ...

Recommended for you

Deadly human pathogen Cryptococcus fully sequenced

9 hours ago

Within each strand of DNA lies the blueprint for building an organism, along with the keys to its evolution and survival. These genetic instructions can give valuable insight into why pathogens like Cryptococcus ne ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

tkjtkj
4 / 5 (2) Dec 14, 2008
Nice work!
I'm curious how they 'tracked' the
activities of the transplanted
luminescent cells: did they make
microscopic slides? or in vivo by
some tricky meneuvre !!??
Mercury_01
4 / 5 (1) Dec 14, 2008
I can assure you, it was tricky indeed.
Tachyon8491
1 / 5 (1) Dec 15, 2008
This is ground-breaking research that offers almost miraculous therapeutic potential. Now it would be interesting to know whether in the development of post-transplant generations of pluripotent stem-cells the action of differentially acting morphogenetic substances, e.g. glycoproteins such as CAMs, were found to be active. Alternatively, was there evidence of morphogenetic field action? There is for example contrasting evidence for molecular embryogenesis and morphogenetic embryogenesis - it may well be found that one is primary. Consider here the field-action reflected in the Gariaev Phantom DNA effect. What guides the final homeostatis in cytogenesis which signals that an organ is "complete"?

More news stories

Deadly human pathogen Cryptococcus fully sequenced

Within each strand of DNA lies the blueprint for building an organism, along with the keys to its evolution and survival. These genetic instructions can give valuable insight into why pathogens like Cryptococcus ne ...

Biologists help solve fungi mysteries

(Phys.org) —A new genetic analysis revealing the previously unknown biodiversity and distribution of thousands of fungi in North America might also reveal a previously underappreciated contributor to climate ...

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...

Chronic inflammation linked to 'high-grade' prostate cancer

Men who show signs of chronic inflammation in non-cancerous prostate tissue may have nearly twice the risk of actually having prostate cancer than those with no inflammation, according to results of a new study led by researchers ...