Some blood-system stem cells reproduce more slowly than expected

Dec 05, 2008

(PhysOrg.com) -- Investigators from Massachusetts General Hospital (MGH) have found a subpopulation of hematopoietic stem cells, the source of all blood and immune system cells, that reproduce much more slowly than previously anticipated. Use of these cells may improve the outcome of stem cell transplants – also called bone marrow transplants – for the treatment of leukemia and other marrow-based diseases. The report will appear in the journal Nature Biotechnology and is being released online to coincide with a similar study in the journal Cell.

"Hematopoietic stem cell transplantation saves many lives every day and is the most established therapeutic application of stem cells, but ironically we know very little about the cells that have made this clinical success possible," says Hanno Hock, MD, PhD, of the MGH Center for Regenerative Medicine, who led the study. "If we can improve our understanding of the biology of these cells, we should be able to offer our patients more therapeutic options."

It has been believed that the entire population of hematopoietic stem cells (HSCs) in the bone marrow reproduce at a rate of about 7 percent per day, with each cell dividing every two weeks. But previous investigations of stem cell proliferation appear to have missed the fact that some cells divide much less frequently. The MGH team developed a mouse model in which HSCs could be induced to express a green fluorescent label for a limited period of time. Tracking how long cells retained the label after its expression was halted indicated how long a cell remained in a resting phase between cell divisions.

While 80 percent of the labeled HSCs were observed to proliferate at the expected rate, 20 percent of cells reproduced much more slowly, dividing once every 100 days or longer. Another experiment found that a gene believed to keep HSCs in a resting state was not required to maintain the reduced rate of cell division in these slow-cycling HSCs, and a mathematical model of HSC proliferation only matched what was actually seen in the labeled mouse model if it assumed two populations of HSCs with differing rates of cell division.

To test whether the rate of proliferation changed the cells' ability to repopulate bone marrow, stem cell transplants were conducted using HSCs that had been labeled several months earlier and retained varying levels of the green marker – with higher label intensity signifying the slowly proliferating cells. The best results were achieved with cells maintaining the most label, which would signify the slow-cycling population, while cells in which the label was weakest were least able to repopulate the animals' marrow.

"Our results suggest that we understand a lot less about HSCs than we thought," Hock says. "If we can find more markers for these slow-cycling cells and identify them in human bone marrow, we may be able to make more of them and find additional clinical applications." An assistant professor of Medicine at Harvard Medical School, Hock is also associated with the MGH Cancer Center and the Harvard Stem Cell Institute.

Source: Massachusetts General Hospital

Explore further: Dairy farms asked to consider breeding no-horn cows

add to favorites email to friend print save as pdf

Related Stories

Stem cells make similar decisions to humans

Mar 25, 2015

Scientists at the University of Copenhagen have captured thousands of progenitor cells of the pancreas on video as they made decisions to divide and expand the organ or to specialize into the endocrine cells that regulate ...

Recommended for you

Dairy farms asked to consider breeding no-horn cows

Mar 28, 2015

Food manufacturers and restaurants are taking the dairy industry by the horns on an animal welfare issue that's long bothered activists but is little known to consumers: the painful removal of budding horn ...

Italian olive tree disease stumps EU

Mar 27, 2015

EU member states are divided on how to stop the spread of a disease affecting olive trees in Italy that could result in around a million being cut down, officials said Friday.

China starts relocating endangered porpoises: Xinhua

Mar 27, 2015

Chinese authorities on Friday began relocating the country's rare finless porpoise population in a bid to revive a species threatened by pollution, overfishing and heavy traffic in their Yangtze River habitat, ...

A long-standing mystery in membrane traffic solved

Mar 27, 2015

In 2013, James E. Rothman, Randy W. Schekman, and Thomas C. Südhof won the Nobel Prize in Physiology or Medicine for their discoveries of molecular machineries for vesicle trafficking, a major transport ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.