Some blood-system stem cells reproduce more slowly than expected

Dec 05, 2008

(PhysOrg.com) -- Investigators from Massachusetts General Hospital (MGH) have found a subpopulation of hematopoietic stem cells, the source of all blood and immune system cells, that reproduce much more slowly than previously anticipated. Use of these cells may improve the outcome of stem cell transplants – also called bone marrow transplants – for the treatment of leukemia and other marrow-based diseases. The report will appear in the journal Nature Biotechnology and is being released online to coincide with a similar study in the journal Cell.

"Hematopoietic stem cell transplantation saves many lives every day and is the most established therapeutic application of stem cells, but ironically we know very little about the cells that have made this clinical success possible," says Hanno Hock, MD, PhD, of the MGH Center for Regenerative Medicine, who led the study. "If we can improve our understanding of the biology of these cells, we should be able to offer our patients more therapeutic options."

It has been believed that the entire population of hematopoietic stem cells (HSCs) in the bone marrow reproduce at a rate of about 7 percent per day, with each cell dividing every two weeks. But previous investigations of stem cell proliferation appear to have missed the fact that some cells divide much less frequently. The MGH team developed a mouse model in which HSCs could be induced to express a green fluorescent label for a limited period of time. Tracking how long cells retained the label after its expression was halted indicated how long a cell remained in a resting phase between cell divisions.

While 80 percent of the labeled HSCs were observed to proliferate at the expected rate, 20 percent of cells reproduced much more slowly, dividing once every 100 days or longer. Another experiment found that a gene believed to keep HSCs in a resting state was not required to maintain the reduced rate of cell division in these slow-cycling HSCs, and a mathematical model of HSC proliferation only matched what was actually seen in the labeled mouse model if it assumed two populations of HSCs with differing rates of cell division.

To test whether the rate of proliferation changed the cells' ability to repopulate bone marrow, stem cell transplants were conducted using HSCs that had been labeled several months earlier and retained varying levels of the green marker – with higher label intensity signifying the slowly proliferating cells. The best results were achieved with cells maintaining the most label, which would signify the slow-cycling population, while cells in which the label was weakest were least able to repopulate the animals' marrow.

"Our results suggest that we understand a lot less about HSCs than we thought," Hock says. "If we can find more markers for these slow-cycling cells and identify them in human bone marrow, we may be able to make more of them and find additional clinical applications." An assistant professor of Medicine at Harvard Medical School, Hock is also associated with the MGH Cancer Center and the Harvard Stem Cell Institute.

Source: Massachusetts General Hospital

Explore further: Sheep flock to Eiffel Tower as French farmers cry wolf

add to favorites email to friend print save as pdf

Related Stories

Can stress management help save honeybees?

Nov 24, 2014

Honeybee populations are clearly under stress—from the parasitic Varroa mite, insecticides, and a host of other factors—but it's been difficult to pinpoint any one of them as the root cause of devast ...

Nail stem cells prove more versatile than press ons

Nov 21, 2014

There are plenty of body parts that don't grow back when you lose them. Nails are an exception, and a new study published in the Proceedings of the National Academy of Sciences (PNAS) reveals some of the r ...

Signaling molecule crucial to stem cell reprogramming

Nov 20, 2014

While investigating a rare genetic disorder, researchers at the University of California, San Diego School of Medicine have discovered that a ubiquitous signaling molecule is crucial to cellular reprogramming, a finding with ...

Recommended for you

Parasitic worm genomes: largest-ever dataset released

9 hours ago

The largest collection of helminth genomic data ever assembled has been published in the new, open-access WormBase-ParaSite. Developed jointly by EMBL-EBI and the Wellcome Trust Sanger Institute, this new ...

Male sex organ distinguishes 30 millipede species

9 hours ago

The unique shapes of male sex organs have helped describe thirty new millipede species from the Great Western Woodlands in the Goldfields, the largest area of relatively undisturbed Mediterranean climate ...

How can we avoid kelp beds turning into barren grounds?

13 hours ago

Urchins are marine invertebrates that mould the biological richness of marine grounds. However, an excessive proliferation of urchins may also have severe ecological consequences on marine grounds as they ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.