Some blood-system stem cells reproduce more slowly than expected

Dec 05, 2008

(PhysOrg.com) -- Investigators from Massachusetts General Hospital (MGH) have found a subpopulation of hematopoietic stem cells, the source of all blood and immune system cells, that reproduce much more slowly than previously anticipated. Use of these cells may improve the outcome of stem cell transplants – also called bone marrow transplants – for the treatment of leukemia and other marrow-based diseases. The report will appear in the journal Nature Biotechnology and is being released online to coincide with a similar study in the journal Cell.

"Hematopoietic stem cell transplantation saves many lives every day and is the most established therapeutic application of stem cells, but ironically we know very little about the cells that have made this clinical success possible," says Hanno Hock, MD, PhD, of the MGH Center for Regenerative Medicine, who led the study. "If we can improve our understanding of the biology of these cells, we should be able to offer our patients more therapeutic options."

It has been believed that the entire population of hematopoietic stem cells (HSCs) in the bone marrow reproduce at a rate of about 7 percent per day, with each cell dividing every two weeks. But previous investigations of stem cell proliferation appear to have missed the fact that some cells divide much less frequently. The MGH team developed a mouse model in which HSCs could be induced to express a green fluorescent label for a limited period of time. Tracking how long cells retained the label after its expression was halted indicated how long a cell remained in a resting phase between cell divisions.

While 80 percent of the labeled HSCs were observed to proliferate at the expected rate, 20 percent of cells reproduced much more slowly, dividing once every 100 days or longer. Another experiment found that a gene believed to keep HSCs in a resting state was not required to maintain the reduced rate of cell division in these slow-cycling HSCs, and a mathematical model of HSC proliferation only matched what was actually seen in the labeled mouse model if it assumed two populations of HSCs with differing rates of cell division.

To test whether the rate of proliferation changed the cells' ability to repopulate bone marrow, stem cell transplants were conducted using HSCs that had been labeled several months earlier and retained varying levels of the green marker – with higher label intensity signifying the slowly proliferating cells. The best results were achieved with cells maintaining the most label, which would signify the slow-cycling population, while cells in which the label was weakest were least able to repopulate the animals' marrow.

"Our results suggest that we understand a lot less about HSCs than we thought," Hock says. "If we can find more markers for these slow-cycling cells and identify them in human bone marrow, we may be able to make more of them and find additional clinical applications." An assistant professor of Medicine at Harvard Medical School, Hock is also associated with the MGH Cancer Center and the Harvard Stem Cell Institute.

Source: Massachusetts General Hospital

Explore further: Cell resiliency surprises scientists

add to favorites email to friend print save as pdf

Related Stories

Researchers successfully clone adult human stem cells

Apr 18, 2014

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

New patenting guidelines are needed for biotechnology

19 hours ago

Biotechnology scientists must be aware of the broad patent landscape and push for new patent and licensing guidelines, according to a new paper from Rice University's Baker Institute for Public Policy.

Recommended for you

Genome yields insights into golden eagle vision, smell

10 hours ago

Purdue and West Virginia University researchers are the first to sequence the genome of the golden eagle, providing a bird's-eye view of eagle features that could lead to more effective conservation strategies.

Genetic code of the deadly tsetse fly unraveled

11 hours ago

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.

Ocean microbes display remarkable genetic diversity

11 hours ago

The smallest, most abundant marine microbe, Prochlorococcus, is a photosynthetic bacteria species essential to the marine ecosystem. An estimated billion billion billion of the single-cell creatures live i ...

Engineered E. coli produces high levels of D-ribose

12 hours ago

D-ribose is a commercially important sugar used as a sweetener, a nutritional supplement, and as a starting compound for synthesizing riboflavin and several antiviral drugs. Genetic engineering of Escherichia co ...

User comments : 0

More news stories

Genetic code of the deadly tsetse fly unraveled

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.

Ocean microbes display remarkable genetic diversity

The smallest, most abundant marine microbe, Prochlorococcus, is a photosynthetic bacteria species essential to the marine ecosystem. An estimated billion billion billion of the single-cell creatures live i ...

Cell resiliency surprises scientists

New research shows that cells are more resilient in taking care of their DNA than scientists originally thought. Even when missing critical components, cells can adapt and make copies of their DNA in an alternative ...