Scientists discover novel histone demethylase protein complex

Dec 05, 2008

The Stowers Institute's Workman Lab has discovered a novel histone demethylase protein complex characterized in work published today in Molecular Cell.

The Histone H3 protein is an important component of chromatin, the packing material wrapping up chromosomal DNA and preventing unwanted transcription of the message encoded in the DNA. Histone H3 can be altered by adding (methylating) or removing (demethylating) methyl groups from the histone protein. When genes are transcribed, parts of chromosomes are opened, making them susceptible to inappropriate use. Cells mark transcribed regions of chromosomes with a "landmark," called H3 lysine 36 methylation (H3K36), to direct appropriate use.

Working in fruit flies, the Workman Lab investigated how cells direct dKDM4A, a novel histone demethylase protein, to specific locations, which is important because dKDM4A is responsible for removal of landmark histone modifications during transcription elongation.

"We discovered that dKDM4A can remove specific forms of H3K36, reversing methylation and helping to regulate transcription elongation," said Chia-Hui Lin, Predoctoral Researcher and lead author on the paper. "Surprisingly, we found that dKDM4a associates with Heterochromatin Protein 1a (HP1a), a classic transcriptional silencing factor. The binding of HP1a stimulates the histone demethylation activity of dKDM4A. In fruit fly larvae without HP1a, we found a significantly increased level of H3K36."

"It is known that HP1a acts as a 'scaffold' component during transcription silencing, but recent findings of HP1a's involvement in actively transcribed regions had confounded the chromatin field," said Jerry Workman, Ph.D., Investigator and senior author on the paper. "This work suggests a possible role for HP1a in transcription activation by facilitating histone demethylation by dKDM4A to remove an important histone mark during elongation."

The discovery applies to human health especially as it relates to Huntington disease. The human enzyme that adds methylation marks on histone H3K36 interacts with the Huntington protein, which causes Huntington's disease. Additionally, the human version of dKDM4A functions as an oncogene, which has the potential to cause a normal cell to become cancerous. Overexpression of such a gene product can lead to esophageal squamous carcinoma and prostate cancer. The Workman Lab's efforts to learn more about the dynamic regulation of H3K36 methylation may lead to the discovery of potential mechanisms to cure or alleviate these diseases.

Source: Stowers Institute for Medical Research

Explore further: Sheep flock to Eiffel Tower as French farmers cry wolf

add to favorites email to friend print save as pdf

Related Stories

Form Devices team designs Point as a house sitter

22 hours ago

A Scandinavian team "with an international outlook" and good eye for electronics, software and design aims to reach success with what they characterize as "a softer take" on home security. Their device is ...

Man pleads guilty in New York cybercrime case

Nov 22, 2014

A California man has pleaded guilty in New York City for his role marketing malware that federal authorities say infected more than a half-million computers worldwide.

Recommended for you

Parasitic worm genomes: largest-ever dataset released

2 hours ago

The largest collection of helminth genomic data ever assembled has been published in the new, open-access WormBase-ParaSite. Developed jointly by EMBL-EBI and the Wellcome Trust Sanger Institute, this new ...

Male sex organ distinguishes 30 millipede species

3 hours ago

The unique shapes of male sex organs have helped describe thirty new millipede species from the Great Western Woodlands in the Goldfields, the largest area of relatively undisturbed Mediterranean climate ...

How can we avoid kelp beds turning into barren grounds?

7 hours ago

Urchins are marine invertebrates that mould the biological richness of marine grounds. However, an excessive proliferation of urchins may also have severe ecological consequences on marine grounds as they ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.