Biologists theorize role for DNA packaging in stem cell development

Nov 06, 2008

MIT biologists have discovered that the organization of DNA's packing material plays a critical role in directing stem cells to become different types of adult cells.

The work, to be published in the journal Cell on Nov. 14, could also shed light on the possible role of DNA packaging in cancer development.

Led by Laurie Boyer, assistant professor of biology at MIT, the researchers examined the role of chromatin — the structure that forms when DNA is wound around a core of proteins called histones.

"We're particularly interested in how chromatin structure influences gene expression and ultimately cell fate," Boyer said. "We hope the studies we are doing can lead to better understanding of development as well as certain diseases."

It has been theorized that cancer cells may overexpress genes involved in early embryonic development, allowing them to proliferate unchecked and regress from adult tissue cells to a stem cell-like state.

Such regression could be partly mediated by changes in chromatin. This packaging is believed to help control DNA transcription because the more tightly wound the chromatin is, the less accessible DNA is to be transcribed.

The new study focused on a variant type of histone known as H2AZ, which other researchers have recently identified as a protein of interest in cancer.

While H2AZ is ubiquitously expressed in many cell types including adult cells, it is known to be essential for normal embryonic development. The new research reveals why: The variant histones are found near the promoter regions of a particular set of genes that are important for development.

The same genes are also regulated by a group of proteins known as Polycomb group (PcG) proteins, which act as gene silencers.

"It suggests that this histone variant — along with the Polycomb group proteins — may act as some kind of regulatory switch that mediates cell fate transitions," Boyer said. "We hypothesize that they're working together, and that allows these genes to be silent yet poised for activation in stem cells."

In future studies, Boyer's team plans to look at patterns of H2AZ distribution in cancerous cells.

Source: Massachusetts Institute of Technology

Explore further: New study charts the global invasion of crop pests

add to favorites email to friend print save as pdf

Related Stories

Histones and the mystery of cell proliferation

Aug 19, 2014

Before cells divide, they create so much genetic material that it must be wound onto spools before the two new cells can split apart. These spools are actually proteins called histones, and they must multiply ...

How steroid hormones enable plants to grow

Aug 19, 2014

Plants can adapt extremely quickly to changes in their environment. Hormones, chemical messengers that are activated in direct response to light and temperature stimuli help them achieve this. Plant steroid ...

Artificial cells act like the real thing

Aug 18, 2014

Imitation, they say, is the sincerest form of flattery, but mimicking the intricate networks and dynamic interactions that are inherent to living cells is difficult to achieve outside the cell. Now, as published ...

How yeast formations got started

Aug 15, 2014

Researchers conducted a comparative analysis of nearly 60 fungal genomes to determine the genetic traits that enabled the convergent evolution of yeasts.

Recommended for you

New study charts the global invasion of crop pests

6 hours ago

Many of the world's most important crop-producing countries will be fully saturated with pests by the middle of the century if current trends continue, according to a new study led by the University of Exeter.

Zambia lifts ban on safari hunting

8 hours ago

Zambia has lifted a 20-month ban on safari hunting because it has lost too much revenue, but lions and leopards will remain protected, the government said Wednesday.

Wolves susceptible to yawn contagion

11 hours ago

Wolves may be susceptible to yawn contagion, according to a study published August 27, 2014 in the open-access journal PLOS ONE by Teresa Romero from The University of Tokyo, Japan, and colleagues.

User comments : 0