Bacteria manage perfume oil production from grass

Oct 31, 2008

Scientists in Italy have found bacteria in the root of a tropical grass whose oils have been used in the cosmetic and perfumery industries. These bacteria seem to promote the production of essential oils, but also they change the molecular structure of the oil, giving it different flavours and properties: termicidal, insecticidal, antimicrobial and antioxidant.

Studying the root of the tropical Vetiver grass through interdisciplinary research, the microbiologists Pietro Alifano and Luigi Del Giudice, the plant biologist Massimo Maffei and their colleagues found that Vetiver root cells produce a few oil precursors, which are then metabolised by the root bacteria to build up the complexity of the Vetiver oil. The bacteria were found in the oil-producing cells as well as in root locations that are closely associated with the essential oil.

The Vetiver grass is the only grass cultivated specifically for its root essential oil, which is made up of chemicals called sesquiterpenes. These are used in plants as pheromones and juvenile hormones. The essential oils also contain alcohols and hydrocarbons, which, together with the sesquiterpenes are primarily used in perfumery and cosmetics. The perfumery and flavouring industry could benefit from the increased variety that these bacteria provide to the smells and tastes of these oils.

The bacteria responsible for this transformation include alpha-, beta- and gamma-proteobacteria, high-G+C Gram-positive bacteria as well as microbes which belong to the Fibrobacteres / Acidobacteria group.

"This research opens new frontiers in the biotech arena of natural bioactive compounds" said Professor Alifano "Pharmaceutical, perfumery and flavouring industries may now exploit the selected microbial strains and widen their metabolic libraries".

"The ecological role of plant-microbial associations shows another fascinating aspect" said Professor Maffei "The metabolic interplay between a plant, which offers a few simple molecules, with root bacteria, that biotransform them into an array of bioactive compounds, increases fitness and reveals new cost-efficient survival strategies"

Source: Wiley

Explore further: Cell resiliency surprises scientists

add to favorites email to friend print save as pdf

Related Stories

Gardens used to reduce landslides

Sep 25, 2013

With a technology developed at the National Autonomous University of Mexico (UNAM), the slopes of the roads could become monumental gardens, reducing the number of landslides and isolation between populations.

Bottlenose dolphin strandings up in US East Coast

Aug 08, 2013

An unusually high number of bottlenose dolphins are dying off the U.S. East Coast this summer, the deadliest period for the sea mammals since a virus killed off more than 700 in the late 1980s, federal officials said Thursday.

Petroleum-eating mushrooms

Nov 30, 2011

Take a Petri dish containing crude petroleum and it will release a strong odor distinctive of the toxins that make up the fossil fuel. Sprinkle mushroom spores over the Petri dish and let it sit for two weeks ...

Recommended for you

Genetic code of the deadly tsetse fly unraveled

13 minutes ago

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.

Ocean microbes display remarkable genetic diversity

13 minutes ago

The smallest, most abundant marine microbe, Prochlorococcus, is a photosynthetic bacteria species essential to the marine ecosystem. An estimated billion billion billion of the single-cell creatures live i ...

Engineered E. coli produces high levels of D-ribose

1 hour ago

D-ribose is a commercially important sugar used as a sweetener, a nutritional supplement, and as a starting compound for synthesizing riboflavin and several antiviral drugs. Genetic engineering of Escherichia co ...

Cell resiliency surprises scientists

2 hours ago

New research shows that cells are more resilient in taking care of their DNA than scientists originally thought. Even when missing critical components, cells can adapt and make copies of their DNA in an alternative ...

User comments : 0

More news stories

Genetic code of the deadly tsetse fly unraveled

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.

Ocean microbes display remarkable genetic diversity

The smallest, most abundant marine microbe, Prochlorococcus, is a photosynthetic bacteria species essential to the marine ecosystem. An estimated billion billion billion of the single-cell creatures live i ...

Engineered E. coli produces high levels of D-ribose

D-ribose is a commercially important sugar used as a sweetener, a nutritional supplement, and as a starting compound for synthesizing riboflavin and several antiviral drugs. Genetic engineering of Escherichia co ...