Freeing protein-based drugs from bacteria's natural traps

Oct 13, 2008

In a finding that could speed the development of new protein-based drugs for fighting diabetes, hepatitis, and other diseases, researchers are reporting progress toward preventing or destroying an unusual structure that reduces the production yield of bioengineered drugs. The article is scheduled for the Oct. 13 issue of Chemical & Engineering News, ACS' weekly newsmagazine.

In the article, C&EN Associate Editor Jyllian Kemsley notes that genetically-engineered E. coli bacteria are increasingly used to produce protein-based drugs for a variety of diseases.

However, these proteins are often not usable because they become trapped in large, insoluble clumps called "inclusion bodies." Current methods to extract proteins trapped in these clumps involve breaking down the clumps chemically and refolding the proteins, a process that is inefficient and sometimes destroys the desired protein.

In the article, Kemsley describes new research insights into the structure and formation of these unusual clumps that could lead to their prevention. Scientists, for instance, have discovered evidence that inclusion bodies form due to interactions between molecular structures called beta-sheets and that clumping could be prevented by preventing beta-sheet interactions.

Article: "Protein Aggregates Probed"; pubs.acs.org/cen/science/86/8641sci1.html

Source: ACS

Explore further: New material makes water and oil roll off

add to favorites email to friend print save as pdf

Related Stories

Some anti-inflammatory drugs affect more than their targets

Aug 21, 2014

Researchers have discovered that three commonly used nonsteroidal anti-inflammatory drugs, or NSAIDs, alter the activity of enzymes within cell membranes. Their finding suggests that, if taken at higher-than-approved ...

Recommended for you

New material makes water and oil roll off

2 hours ago

Car finish, to which no dirt particles adhere, house fronts, from which graffiti paints roll off, and shoes that remain clean on muddy paths – the material "fluoropore" might make all this possible. Both ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.