Landmark discovery of 'engine' that drives cell movement

Oct 06, 2008

This research by Thomas Leung, Ph.D., and his team in the GSK-IMCB Group at the Institute of Molecular and Cell Biology (IMCB), under Singapore's Agency for Science, Technology and Research, is fundamental to the understanding of how assembles its internal machinery required for cell movement.

The findings have widespread implications in the fields of cancer growth and spread, wound- healing, learning and memory, and developmental biology.

The researchers discovered a complex of three proteins that directly regulates the myosin network within a cell, thus generating traction force to propel the cell forward. (Myosin is the most common protein found in muscle cells, and is responsible for the elastic and contractile properties of muscle. A different form of myosin is involved in cell movement.)

This action of the tripartite protein complex may be likened to a spring in a toy motorcar – when the protein complex assembles and moves backwards within the cell, it resembles the wound up "engine" of the toy car that has been pulled backwards.

Subsequent disassembling of the protein complex and the resultant forward movement of the cell can be likened to the released spring which unleashes the earlier stored potential energy to propel the car forward.

Michael Sheetz, Ph.D., who is William R Kenan Jr Professor of Cell Biology at the Department of Biological Sciences, Columbia University, and also Distinguished Visiting Professor at the National University of Singapore, said, "This is an exciting paper because Leung's group has discovered an unexpected step in cell migration and contractility — a complex of three proteins including a form of myosin, that is responsible for assembling most of the other myosin components involved in motile processes. The assembly mechanism has been a major mystery and is critical in a variety of diseases from cardiovascular to aging. Now we have a new tool to understand the bases of these critical processes."

Of the three proteins MRCK, LRAP35a and MYO18A, MRCK was discovered by the GSK-IMCB group 10 years ago, while the other two had hitherto unknown functions. Dr. Leung of IMCB said, "The success of the work relies on the commitment and perseverance of the team. A major contributor, Dr. Ivan Tan, is a home-grown scientist who has been working on this project for many years and he has had several clues as to how the system functions for some time, but it was only recently that the jigsaw puzzle was put together. The system has the potential to unravel other as yet undiscovered mechanisms that coordinate the different 'engines' for proper cell migration."

The research by the GSK-IMCB Group is supported by the GlaxoSmithKline (Singapore) Research Fund that was set up in 1989. Louis Lim, Ph.D., head of the GSK-IMCB Group, said, "The 2008 Cell paper represents the culmination of many years of industry and dedication on the part of Dr. Thomas Leung and Dr. Ivan Tan. Dr. Leung has been responsible for defining the role of other signalling enzymes along with other members of the GSK-IMCB Group, and we are very glad to acknowledge the support of the GSK Singapore Research Fund throughout these years."

Source: Agency for Science, Technology and Research (A*STAR), Singapore

Explore further: Love at first smell: Can birds choose mates by their odors?

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

How can we avoid kelp beds turning into barren grounds?

2 hours ago

Urchins are marine invertebrates that mould the biological richness of marine grounds. However, an excessive proliferation of urchins may also have severe ecological consequences on marine grounds as they ...

Genomes of malaria-carrying mosquitoes sequenced

18 hours ago

Nora Besansky, O'Hara Professor of Biological Sciences at the University of Notre Dame and a member of the University's Eck Institute for Global Health, has led an international team of scientists in sequencing ...

Bitter food but good medicine from cucumber genetics

18 hours ago

High-tech genomics and traditional Chinese medicine come together as researchers identify the genes responsible for the intense bitter taste of wild cucumbers. Taming this bitterness made cucumber, pumpkin ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.