Study on salmonella self-destruction

Aug 21, 2008

ETH Zurich biologists, led by Professors Martin Ackermann and Wolf-Dietrich Hardt, in collaboration with Michael Doebeli of the University of British Colombia in Vancouver (CN), have been able to describe how random molecular processes during cell division allow some cells to engage in a self-destructive act to generate a greater common good, thereby improving the situation of the surviving siblings.

The biologists investigated this unusual biological concept using the pathogenic salmo-nella bacteria as an example. Diseases caused by salmonellae are very unpleasant and even life-threatening. When contaminated food is consumed – for example, egg-based foods or chicken and meat – salmonella bacteria enter the gastro-intestinal tract where it triggers infection. Vomiting and diarrhoea can last for days.

Normally, salmonellae grow poorly in the intestine because they are not competitive with other bacteria of the gut. However, this dynamic changes if salmonellae induce an in-flammatory response, namely diarrhoea, which suppresses the other bacteria. The in-flammation is triggered by salmonellae penetrating into the intestinal tissues. Once in-side, salmonellae is killed by the immune system. This in turn creates a conflict: salmo-nellae are either suppressed by the other bacteria in the gut, or die while trying to elimi-nate these competitors.

As Ackermann, Hardt and Doebeli report, salmonellae have found a surprising solution to this conflict. Inside the gut, the samonella bacteria forms two groups that engage in job-sharing. A first group invades the tissue, triggers an inflammation, then dies. A sec-ond group waits inside the gut until the inactivation of the normal intestinal flora gives them an opportunity to strike.This second group then multiplies unhindered.

Random processes and self-sacrifice

What determines whether an individual salmonella bacterium cell self-sacrifices, or whether it will wait and benefit from the sacrifice of others? The two groups are clones of the same genotype, so genetic differences do not play a role. Rather, the difference between the two groups is a result of random molecular processes during cell division. Cellular components are randomly distributed between the two daughter cells with each cell receiving a different amount. The resulting imbalance can be amplified and lead to different properties of the clonal siblings.

In recent years it has been recognized that such random processes in a cell can have a large influence on individual cells. The work by the ETH Zurich researchers reveals a new biological explanation for this phenomenon. The two salmonella phenotypes share their work, with the result being that they achieve what a single phenotype on its own would not be capable of doing. This scenario is fundamentally different from the usual explanations and presupposes that individual phenotypes interact and have an effect on one another. The self-sacrifice of phenotypes may be quite common among pathogenic bacteria, for example, among the pathogens causing diarrhoea after antibiotic treatment (clostridia) or pneumonia (streptococci).

Essential findings

Professor Ackermann says that "Random processes could promote job-sharing in many different types of organisms." Many bacteria manufacture substances which are toxic to their hosts but which are only released into the host environment if the bacteria sacrifice themselves - if this is the sole method to get the toxin out of the cell. This is why every cell makes a decision: toxin and death or no toxin.

He stresses that it would not have been possible to study this theory so thoroughly with-out the collaboration that took place among the three specialist groups: Professor Hardt's group specialises in salmonella infections; Professor Doebeli is a mathematician and theoretical biologist; and Professor Ackermann's group focuses on phenotypic noise.

Source: ETH Zurich/Swiss Federal Institute of Technology

Explore further: Bulletproof nuclei? Stem cells exhibit unusual absorption property

add to favorites email to friend print save as pdf

Related Stories

Revealing camouflaged bacteria

9 hours ago

A research team at the Biozentrum of the University of Basel has discovered an protein family that plays a central role in the fight against the bacterial pathogen Salmonella within the cells. The so cal ...

Brighter future for bacteria detection

Mar 20, 2014

Ever wonder why fruits and vegetables sometimes hit the shelves contaminated by pathogenic bacteria such as listeria, E. coli, and salmonella?

Aging ISS a space lab of 'unlimited' opportunity

Jan 27, 2014

It may be 350 kilometers (215 miles) above Earth and a place that only a privileged few will ever visit, but the International Space Station is crucial to advances in science, health and technology, experts ...

Recommended for you

Plants with dormant seeds give rise to more species

Apr 18, 2014

Seeds that sprout as soon as they're planted may be good news for a garden. But wild plants need to be more careful. In the wild, a plant whose seeds sprouted at the first warm spell or rainy day would risk disaster. More ...

Researchers successfully clone adult human stem cells

Apr 18, 2014

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

User comments : 0

More news stories

Biologists help solve fungi mysteries

(Phys.org) —A new genetic analysis revealing the previously unknown biodiversity and distribution of thousands of fungi in North America might also reveal a previously underappreciated contributor to climate ...

Finnish inventor rethinks design of the axe

(Phys.org) —Finnish inventor Heikki Kärnä is the man behind the Vipukirves Leveraxe, which is a precision tool for splitting firewood. He designed the tool to make the job easier and more efficient, with ...

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.