Carbon dioxide poses risk to marine life survival

Aug 06, 2008
Heliocidaris erythogramma.

(PhysOrg.com) -- Climate change and the subsequent acidification of the world's oceans will significantly reduce the successful fertilisation of certain marine species by the year 2100, an international team of biological scientists has found.

A team from Macquarie University's marine ecology group, led by Dr Jane Williamson, joined forces with the University of Gothenburg in Sweden to study the effects of seawater acidification on sea urchin fertility for the first time, finding a link between decreased pH (increased acid) levels and a reduction in sperm swimming speed and motility.

Williamson said sea urchin gametes and larvae used in the research were exposed to the same acid levels that are predicted to be present in the world's oceans by the year 2100.

The surface of the ocean absorbs up to 30 per cent of the yearly emissions of carbon dioxide. This absorbed carbon dioxide dissolves in the water and forms a weak acid that is gradually increasing the acidity of the oceans.

"It is widely believed that seawater is chemically well-buffered, but these results show that the acidification process already well underway may threaten the viability of many marine species," Williamson said.

"Our results show that carbon dioxide-induced acidification of seawater, at levels predicted for the year 2100, reduced fertilisation success of an ecologically dominant marine species by 25 per cent."

The Macquarie University research is especially significant, as equivalent results have only previously been found at far more extreme levels of acidification.

"What we have now is evidence that the world's marine life is far more sensitive to ocean acidification than first suspected, and that means our oceans may be very different places in the not too distant future," Williamson said.

Researchers measured sperm swimming speed, sperm motility, fertilisation success and larval developmental success in individual male x female crosses in the Heliocidaris erythrogramma species using control (pH 8.1) and acidified (pH 7.7) seawater.

The Heliocidaris erythrogramma species is found commonly in inshore waters around south-eastern Australia.

The findings of the Macquarie University study will be published in the August 5 issue of science journal, Current Biology (www.current-biology.com).

Provided by Macquarie University

Explore further: Stanford researchers rethink 'natural' habitat for wildlife

add to favorites email to friend print save as pdf

Related Stories

Dissolving the future of coral reefs

Apr 10, 2014

Swimming through the liquid turquoise waters off the island of Viti Levu, Fiji, I am surrounded by iridescent fish of all colors, schooling around healthy branching corals. With a slight movement of my fins ...

Why some fish can't go with the flow

Mar 07, 2014

Have you ever been snorkelling or scuba diving on a windy day when there are lots of waves? Did you notice how much that flow of water against your body affected your ability to swim and control your movements ...

Recommended for you

Plants with dormant seeds give rise to more species

11 hours ago

Seeds that sprout as soon as they're planted may be good news for a garden. But wild plants need to be more careful. In the wild, a plant whose seeds sprouted at the first warm spell or rainy day would risk disaster. More ...

Researchers successfully clone adult human stem cells

15 hours ago

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

User comments : 0

More news stories

Researchers successfully clone adult human stem cells

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

Male monkey filmed caring for dying mate (w/ Video)

(Phys.org) —The incident was captured by Dr Bruna Bezerra and colleagues in the Atlantic Forest in the Northeast of Brazil.  Dr Bezerra is a Research Associate at the University of Bristol and a Professor ...

Researchers develop new model of cellular movement

(Phys.org) —Cell movement plays an important role in a host of biological functions from embryonic development to repairing wounded tissue. It also enables cancer cells to break free from their sites of ...

Impact glass stores biodata for millions of years

(Phys.org) —Bits of plant life encapsulated in molten glass by asteroid and comet impacts millions of years ago give geologists information about climate and life forms on the ancient Earth. Scientists ...