Researchers prove that insulin-producing cells can give rise to stem-like cells in-vitro

Jul 21, 2008

The question of whether insulin-producing cells of the pancreas can regenerate is key to our understanding of diabetes, and to the further development of regenerative therapies against the disease. Dr Rosenberg from the McGill University Health Centre (MUHC) and McGill University together with Dr Bernard Massie from the Centre hospitalier de l'Université de Montréal (CHUM) have just concluded that they can. The results of their study have been published in the July issue of the journal Laboratory Investigation.

The researchers have shown in vitro that insulin-producing β-cells (beta cells) can return to a more primitive developmental state called stem-like cells. This process is known as "dedifferentiation" and highlights the plasticity of this cell type. This same result has also been validated for the three additional types of cells that – along with β-cells – make up the islets of Langerhans. Together, these islet cells produce insulin and other hormones in the pancreas.

"The potential for dedifferentiation of all the different cells that make up the islets of Langerhans is a totally new finding," Dr. Rosenberg said.

"At this stage, we can't confirm whether the cells' ability to turn into stem-like cells occur naturally in a healthy pancreas, but the results are very encouraging for the development of regenerative therapies to fight diabetes," he continued. The cell's in-vitro plasticity opens up totally new avenues of investigation into the underlying causes of diabetes, and will validate the development of innovative treatments.

This study is the latest step in an extensive regenerative therapies research program based on a peptide called Islet Neogenesis Associated Protein, or INGAP. Dr. Rosenberg and his colleagues have demonstrated INGAP's potential to induce new islet formation in the pancreas. Clinical trials with INGAP have already demonstrated that it is possible to regrow new functional insulin-producing cells in diabetic patients.

"We know that the peptide works, but we are still lacking certain theoretical bases to explain its mechanism," said Dr. Rosenberg. "This finding will allow us to move ahead on firmer ground."

Source: McGill University

Explore further: Aging white lion euthanized at Ohio zoo

add to favorites email to friend print save as pdf

Related Stories

US seeks China's help after cyberattack

35 minutes ago

The United States is asking China for help as it weighs potential responses to a cyberattack against Sony Pictures Entertainment that the U.S. has blamed on North Korea.

Why the Sony hack isn't big news in Japan

17 hours ago

Japan's biggest newspaper, Yomiuri Shimbun, featured a story about Sony Corp. on its website Friday. It wasn't about hacking. It was about the company's struggling tablet business.

Hopes, fears, doubts surround Cuba's oil future

18 hours ago

One of the most prolific oil and gas basins on the planet sits just off Cuba's northwest coast, and the thaw in relations with the United States is giving rise to hopes that Cuba can now get in on the action.

Ancient clay seals may shed light on biblical era

18 hours ago

Impressions from ancient clay seals found at a small site in Israel east of Gaza are signs of government in an area thought to be entirely rural during the 10th century B.C., says Mississippi State University archaeologist ...

Recommended for you

A vegetarian carnivorous plant

Dec 19, 2014

Carnivorous plants catch and digest tiny animals in order and derive benefits for their nutrition. Interestingly the trend towards vegetarianism seems to overcome carnivorous plants as well. The aquatic carnivorous bladderwort, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.