Researchers Capture Images that Illuminate One of Cell's Mysteries

Jul 18, 2008 By Bill Hathaway

(PhysOrg.com) -- Within human cells, tiny membrane-bound compartments called vesicles shepherd biomolecules from place to place.

How these vesicles form, move and finally fuse to deliver cargo at a particular destination largely remains a mystery, now being investigated by Yale researchers Karin Reinisch and Susan Ferro-Novick.

The scientists, both of the Department of Cell Biology, have focused on understanding the molecular basis for the final steps of cargo delivery, a process believed to be important in specifying the correct delivery address for a particular vesicle.

In the June issue of the journal Cell, they describe how they used X-ray crystallography to visualize a key step in this process.

A decade ago, Ferro-Novick’s lab first discovered the large multi-protein complex known as TRAPPI that plays a role in tethering a vesicle to its target. In a technically demanding feat, the team captured an image of TRAPPI as it activates a regulatory protein within the cell. Activation of the protein, known as Rab GTPase Ypt1, is a crucial step leading to the fusion of the vesicle. The study provides a framework for understanding how the many proteins involved in vesicle docking cooperate.

Large protein assemblies are difficult to crystallize and to visualize at an adequate level of detail, but the team led by Yiying Cai, lead author of the study, was able to overcome those technical hurdles.

“We were able to get these results only because Yiying was relentless in preparing samples of sufficient quality,” Reinisch says.

Other team members currently in the Department of Cell Biology include Darina Lazarova, Shekar Menon and Anthony Sclafani. Key contributions were also made by Harvey Chin in the lab of Enrique De La Cruz in the Department of Molecular Biology and Biophysics.

Provided by Yale University

Explore further: Endangered clouded leopard kittens born in Miami zoo

Related Stories

Swimming algae offer insights into living fluid dynamics

Mar 27, 2015

None of us would be alive if sperm cells didn't know how to swim, or if the cilia in our lungs couldn't prevent fluid buildup. But we know very little about the dynamics of so-called "living fluids," those ...

Scientists discover the cause of heat tolerance in peas

Mar 25, 2015

A recent collaboration between the Canadian Light Source and the University of Saskatchewan Plant Science Department is proving the potential for molecular imaging in plant research that could produce greater ...

Letting go of the (genetic) apron strings

Mar 20, 2015

A new study from Princeton University sheds light on the handing over of genetic control from mother to offspring early in development. Learning how organisms manage this transition could help researchers ...

Recommended for you

Keeping hungry jumbos at bay

6 hours ago

Until now electric fences and trenches have proved to be the most effective way of protecting farms and villages from night time raids by hungry elephants. But researchers think they may have come up with ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.