Novel computational model describes the speed at which HIV escapes the immune response

Jul 18, 2008

Researchers from Utrecht University, The Netherlands, have developed a model that illustrates how HIV evades the immune system. The study, published July 18th in the open-access journal PLoS Computational Biology, incorporates detailed interactions between a mutating virus and the immune system.

HIV avoids recognition by the human immune response through the generation of viral variants called "escape mutants". This avoidance seems to thwart effective control of virus replication, causing HIV-infected patients to progress to AIDS. However, it remains difficult to fully understand the dynamics of immune escape, as data from infected patients is relatively sparse.

Knowing this, Drs. Christian Althaus and Rob De Boer performed computer simulations to help interpret longitudinal data derived from HIV-infected patients. They illustrate that the virus often evades the immune response very slowly, on a timescale of years. Depending on the diversity of the immune system, the virus will either be controlled effectively or accumulate detrimental mutations. The results suggest an alternative strategy of vaccine design could be to reduce the replicative capacity of the virus.

Citation: Althaus CL, De Boer RJ (2008) Dynamics of Immune Escape during HIV/SIV Infection. PLoS Comput Biol 4(7): e1000103. doi:10.1371/journal.pcbi.1000103

Source: Public Library of Science

Explore further: Himalayan Viagra fuels caterpillar fungus gold rush

add to favorites email to friend print save as pdf

Related Stories

Battling superbugs with gene-editing system

Sep 21, 2014

In recent years, new strains of bacteria have emerged that resist even the most powerful antibiotics. Each year, these superbugs, including drug-resistant forms of tuberculosis and staphylococcus, infect ...

Progress in the fight against harmful fungi

Aug 20, 2014

A group of researchers at the Max F. Perutz Laboratories has created one of the three world's largest gene libraries for the Candida glabrata yeast, which is harmful to humans. Molecular analysis of the Candida ...

Trapped: Cell-invading piece of virus captured in lab

Aug 06, 2014

In recent research published in the Journal of Biological Chemistry, Saint Louis University investigators report catching integrase, the part of retroviruses like HIV that is responsible for insertion of the ...

Food allergies: A new, simple method to track down allergens

Jul 02, 2014

Although food allergies are common, sufferers often don't know exactly what in foods cause their allergic reactions. This knowledge could help develop customized therapies, like training the body's immune system to respond ...

Recommended for you

Himalayan Viagra fuels caterpillar fungus gold rush

10 hours ago

Overwhelmed by speculators trying to cash-in on a prized medicinal fungus known as Himalayan Viagra, two isolated Tibetan communities have managed to do at the local level what world leaders often fail to ...

Science casts light on sex in the orchard

13 hours ago

Persimmons are among the small club of plants with separate sexes—individual trees are either male or female. Now scientists at the University of California, Davis, and Kyoto University in Japan have discovered ...

Researchers capture picture of microRNA in action

13 hours ago

Biologists at The Scripps Research Institute (TSRI) have described the atomic-level workings of "microRNA" molecules, which control the expression of genes in all animals and plants.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.