An important step toward molecular electronics

Sep 27, 2004

Silicon microelectronics has undergone relentless miniaturization during the past 30 years, leading to dramatic improvements in computational capacity and speed. But the end of that road is fast approaching, and scientists and engineers have been investigating another promising avenue: using individual molecules as functional electronic devices.

Now a team of engineers at Northwestern University has become the first to precisely align multiple types of molecules on a silicon surface at room temperature -- an important step toward the goal of molecular electronics.

The results, which demonstrate patterning on a scale 10,000 times smaller than that of microelectronics, are published today (Sept. 27) as the cover story of the journal Applied Physics Letters (APL).

"We have demonstrated a strategy for intentionally positioning molecules, which is necessary for the construction of nanoscale systems such as molecular transistors or light-emitting diodes," said Mark C. Hersam, assistant professor of materials science and engineering, who led the research team. "Our process works at room temperature and on silicon, which suggests that it can be made compatible with conventional silicon microelectronics. Ultimately, we want to integrate with current technology, thus creating a bridge between microelectronics and nanoelectronics."

The nanofabrication process, called multi-step feedback-controlled lithography, is useful for a variety of fundamental studies and for the construction and testing of prototype nanoscale devices that could be used in future technologies ranging from consumer electronics to biomedical diagnostics.

"Previously we were working with single molecules on silicon," said Hersam. "This new process enables us to build more complex structures. Plus, the technique is general and can be used with many different molecules, which increases its potential."

The researchers demonstrated their process using a custom-built ultrahigh-vacuum scanning tunneling microscope. With this tool, they constructed chains consisting of styrene and a molecule known as TEMPO and now are studying the electronic properties of this novel nanostructure.

Source: Northwestern University

Explore further: Team reveals molecular structure of water at gold electrodes

add to favorites email to friend print save as pdf

Related Stories

Cold Atom Laboratory creates atomic dance

7 minutes ago

Like dancers in a chorus line, atoms' movements become synchronized when lowered to extremely cold temperatures. To study this bizarre phenomenon, called a Bose-Einstein condensate, researchers need to cool ...

Facebook sues law firms, claims fraud

59 minutes ago

Facebook is suing several law firms that represented a man who claimed he owned half of the social network and was entitled to billions of dollars from the company and its CEO Mark Zuckerberg.

Comet Siding Spring whizzes past Mars (Update)

23 hours ago

A comet the size of a small mountain and about as solid as a pile of talcum powder whizzed past Mars on Sunday, dazzling space enthusiasts with the once-in-a-million-years encounter.

Recommended for you

Nanoparticle technology triples the production of biogas

Oct 22, 2014

Researchers of the Catalan Institute of Nanoscience and Nanotechnology (ICN2), a Severo Ochoa Centre of Excellence, and the Universitat Autònoma de Barcelona (UAB) have developed the new BiogàsPlus, a technology which allows ...

Quantum effects in nanometer-scale metallic structures

Oct 22, 2014

Plasmonic devices combine the 'super speed' of optics with the 'super small' of microelectronics. These devices exhibit quantum effects and show promise as possible ultrafast circuit elements, but current ...

User comments : 0