First evidence that bacteria get 'touchy-feely' about dangerous biofilms

May 19, 2008
First evidence that bacteria get 'touchy-feely' about dangerous biofilms
New insights on the formation of biofilms could play a role in diminishing antibiotic resistant infections while enhancing the safety of implant materials. Courtesy of Rocky Mountain Laboratories, NIAID, NIH

Researchers in Massachusetts report for the first time that bacteria use a sense of touch in deciding where to form biofilms. Those colonies of microbes grow on medical implants and other devices and play a key role in the multi-billion-dollar-per-year problem of antibiotic resistant infections.

The finding could lead to safer implant materials for fighting biofilms, which are linked to thousands of deaths each year, the scientists say. It also can be used to develop materials capable of sustaining cultures of important, beneficial bacteria. Their study is scheduled for the June 9 issue of ACS’ Biomacromolecules.

In the new report, Krystyn J. Van Vliet and colleagues note that past research focused on killing microbes that already have formed biofilms, or impregnating surfaces with antimicrobial compounds. Scientists knew about certain surface conditions that affected biofilm formation, though many results were in conflict, and the effect of mechanical stiffness of those surfaces had not been considered previously.

The researchers studied the effects of different polymer materials on the adhesion of Staphylococcus epidermidis, the most common bacterial source of hospital-based infections, and on E. coli. In laboratory tests, they found that the bacteria adhered preferentially to the stiffer polymers, as compared to other polymers.

Altering the stiffness of the polymers used in implants could lead to “smarter” materials for fighting or sustaining biofilm formation, they conclude.

Source: ACS

Explore further: Scientists discover RNA modifications in some unexpected places

add to favorites email to friend print save as pdf

Related Stories

Exploring Mars in low Earth orbit

Jul 31, 2014

In their quest to understand life's potential beyond Earth, astrobiologists study how organisms might survive in numerous environments, from the surface of Mars to the ice-covered oceans of Jupiter's moon, ...

Biomarkers of the deep

Jul 25, 2014

Tucked away in the southwest corner of Spain is a unique geological site that has fascinated astrobiologists for decades. The Iberian Pyrite Belt (IPB) in Spain's Río Tinto area is the largest known deposit ...

Food bug forensic tracking

Jan 14, 2013

Detective-style high-tech methods are being used in meat factories to trace harmful microbial contaminants.

Recommended for you

Scientists given rare glimpse of 350-kilo colossal squid

12 minutes ago

Scientists said Tuesday a female colossal squid weighing an estimated 350 kilograms (770 lbs) and thought to be only the second intact specimen ever found was carrying eggs when discovered in the Antarctic.

Scientists discover tropical tree microbiome in Panama

13 hours ago

Human skin and gut microbes influence processes from digestion to disease resistance. Despite the fact that tropical forests are the most biodiverse terrestrial ecosystems on the planet, more is known about ...

User comments : 0