Genome sequence of Podospora anserina reveals unsuspected ability to use complex carbon sources

May 06, 2008

The model fungus Podospora anserina (P. anserina) has undergone substantial evolution since its separation from Neurospora crassa, as revealed from the Podospora draft genome sequence published in BioMed Central’s open access journal, Genome Biology. The study also shows that the Podospora genome contains a large, highly specialised set of genes potentially involved in the breakdown of complex carbon sources, which may have potential use in biotechnology applications.

P. anserina is a dung-inhabiting, saprophytic fungus used to study areas of eukaryotic and fungal biology, including ageing and sexual development. Eric Espagne, Olivier Lespinet and Fabienne Malagnac from the Institute of Genetics and Microbiology in Paris and a team of researchers from France and The Netherlands used a whole genome shotgun and assembly approach to produce a 10X draft sequence of the fungus.

The researchers found evidence that P. anserina has undergone dynamic evolution since it diverged from its close relative N. crassa. They found evidence of extensive gene loss and gene shuffling, as well as substantial gene duplication. In addition, the transcription machinery of P. anserina produced a large number of RNAs that could potentially have regulatory roles. Further investigation of these non-conventional transcripts is required and could lead to the discovery of novel regulatory mechanisms, specifically during mycelium growth or accompanying the differentiation of the multicellular fructification produced during sexual reproduction.

The research team also discovered that P. anserina contains a large array of genes that may allow the fungus to use the natural carbon sources found wherever it grows. For example, the fungus carries genes potentially involved in the breakdown of the plant polymers cellulose and lignin, which may have future applications in biotechnology.

Espagne concludes: “As for other saprophytic fungi, the P. anserina genome sequence has opened new avenues in the comprehensive study of a variety of biological processes … It also demonstrates how P. anserina is well adapted at the genome level to its natural environment, which was confirmed by the analysis of growth profiles. This result emphasizes the necessity to study several less well-tracked organisms in addition to those well known in the scientific community, as these may yield unexpected new insights into biological phenomena of general interest.”

Source: BioMed Central

Explore further: Helping sweet cherries survive the long haul

add to favorites email to friend print save as pdf

Related Stories

Obama unveils new measures to stem identity theft

27 minutes ago

US President Barack Obama on Friday ordered "pin and chip" security measures for government payment systems, aiming to stem the proliferation of credit card fraud and identity theft.

Twitpic to shutter service after all

1 hour ago

Twitpic on Friday put out word that the service is shutting down after all, apologizing for a "false alarm" that a merger would be its salvation.

Microsoft CEO launches diversity training effort

2 hours ago

(AP)—Microsoft CEO Satya Nadella has again apologized to employees and announced in a company-wide memo that all workers will receive expanded training on how to foster an inclusive culture as he works to repair damage ...

Recommended for you

Helping sweet cherries survive the long haul

40 minutes ago

A new study says that cherry producers need to understand new intricacies of the production-harvest-marketing continuum in order to successfully move sweet cherries from growers to end consumers. For example, the Canadian ...

YEATS protein potential therapeutic target for cancer

56 minutes ago

Federal Express and UPS are no match for the human body when it comes to distribution. There exists in cancer biology an impressive packaging and delivery system that influences whether your body will develop cancer or not.

User comments : 0