New structure found deep within West Antarctic Ice Sheet

Sep 23, 2004

Ice sheet more susceptible to change than previously thought

Scientists have found a remarkable new structure deep within the West Antarctic Ice Sheet which suggests that the whole ice sheet is more susceptible to future change than previously thought. The discovery, by scientists from Bristol University and the British Antarctic Survey in collaboration with US colleagues, is reported this week (September 24) in the international journal Science.

The stability of the West Antarctic Ice Sheet has been hotly debated since the 1960s because of its potential to raise global sea level by around 5 m over several centuries. The potential impacts of a major change in the West Antarctic ice sheet are severe – sea level rise will be fantastically expensive for developed nations with coastal cities and dire for poor populations in low-lying coastal areas.

Lead author Prof Martin Siegert of Bristol University said, 'There is a great deal of speculation that global warming may cause sea levels to rise due to the melting of ice sheets. Until now, scientific observations suggested that change to the West Antarctic Ice Sheet would be restricted to the edges implying that large-scale instability of the ice sheet is unlikely. This new discovery deep within the ice means that we need to re-think our current assessment of the risk of collapse of this ice sheet.'

The structure - a distinctive fold in the ice, 800m deep by 50 km long - was detected using ice-penetrating radar. Ice sheets normally consist of flat layers of ice, so finding this huge fold was a complete surprise. Its presence suggests that a few thousand years ago surface ice at the centre of the ice sheet was moving rapidly and being 'drawn down' towards the bottom of the ice sheet.

More recently the rate of the ice flow has changed from fast to slow. The direction of flow has also changed. The most likely explanation for these changes is the 'switching-off' of a large ice stream at the margin of the ice sheet several centuries ago. These changes imply that the centre of the ice sheet is more mobile than scientists previously realised, requiring them to rethink existing models.

Ice sheet

The Antarctic ice sheet is the layer of ice up to 5000 m thick covering the Antarctic continent. It is formed from snow falling in the interior of the Antarctic which compacts into ice. The ice sheet slowly moves towards the coast, eventually breaking away as icebergs which gradually melt into the sea.

The ice sheet covering East Antarctica is very stable, because it lies on rock that is above sea level and is thought unlikely to collapse. The West Antarctic is less stable, because it sits on rock below sea level.

If the ice sheet does collapse, it is more likely to be part of a natural collapse cycle, or as a response to climatic change that occurred many thousands of years ago, rather than a response to current climatic change.

Source: University of Bristol & British Antarctic Survey

Explore further: Planet 'reared' by four parent stars

add to favorites email to friend print save as pdf

Related Stories

Antarctica's retreating ice may re-shape Earth

Feb 27, 2015

(AP)—From the ground in this extreme northern part of Antarctica, spectacularly white and blinding ice seems to extend forever. What can't be seen is the battle raging underfoot to re-shape Earth.

Extreme science in the Arctic

Feb 25, 2015

A research team from Northwestern University was dropped by helicopter in the desolate wilderness of Greenland with four weeks of provisions and the goal of collecting ancient specimens preserved in Arctic lakebeds.

Rare Antarctic sub-glacial eruption

Feb 18, 2015

Australian scientists are hoping a rare sub-glacial water eruption near Australia's Casey station, will reveal why meltwater is present, and the extent of a river and dam system flowing deep under the Law ...

A song of fire and ice in the ocean

Feb 10, 2015

Cyclic changes in the tilt of the Earth's axis and the eccentricity of its orbit have left their mark on hills deep under the ocean, a study published in Science has found.

Recommended for you

Planet 'reared' by four parent stars

1 hour ago

Growing up as a planet with more than one parent star has its challenges. Though the planets in our solar system circle just one star—our sun—other more distant planets, called exoplanets, can be reared ...

Image: Training for Sentinel-2A launch

13 hours ago

On 25 February, the Sentinel-2A Mission Control Team at ESOC, ESA's mission operations centre, Darmstadt, Germany, commenced simulation training for the critical launch and early orbit phase.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.