British scientists zero in on the birth of the universe

Sep 23, 2004

British scientists from the University of Cambridge and the University of Exeter discovered that the evolution of the Universe was much slower than previously thought. Dr. Andrew Bunker, who studied images taken by the Hubble Space Telescope, will present the results at a NASA workshop today at the Space Telescope Science Institute in Baltimore, Md.
The British team was the first to analyse Hubble's Ultra Deep Field (HUDF) images, which provide mankind's deepest optical view of the Universe. The team viewed the number of star-forming galaxies and found that there were far less than expected. The rate at which new stars were born was a lot slower than formerly thought.

Scientists believe that the energy released when stars were born provided enough radiation to lift a curtain of cold, primordial hydrogen that formed after the Big Bang, now scientists are having to re-think that theory.

"We can measure how fast stars are being born in the early universe," said Dr. Andrew Bunker. "But our results reveal a puzzle; the birth rate seems low compared with more recent pasts. This is not what theorists had expected: at early times, the Universe seems to undergo a rapid heating. The main candidate for what caused this is ultraviolet radiation, which can be generated as stars are born. Our results suggest this was not the case, the small number of star forming galaxies found in the Ultra Deep Field may not be sufficient to do this. Perhaps this heating happened further back in time, closer to the Big Bang."

By analysing pictures taken by the Hubble telescope Bunker's team could see almost to the beginning of time. They were able to identify 50 objects likely to be galaxies so far away that light from them has taken 13 billion years to reach the earth. The galaxies uncovered by the team existed 95 percent of the way back to the beginning of time. This is the closest man has ever come to the Big Bang, when the Universe was less than a billion years old.

Explore further: Mysteries of space dust revealed

add to favorites email to friend print save as pdf

Related Stories

Toothpaste fluorine formed in stars

Aug 21, 2014

The fluorine that is found in products such as toothpaste was likely formed billions of years ago in now dead stars of the same type as our sun. This has been shown by astronomers at Lund University in Sweden, ...

The source of the sky's X-ray glow

Jul 27, 2014

In findings that help astrophysicists understand our corner of the galaxy, an international research team has shown that the soft X-ray glow blanketing the sky comes from both inside and outside the solar system.

Recommended for you

Mysteries of space dust revealed

17 hours ago

The first analysis of space dust collected by a special collector onboard NASA's Stardust mission and sent back to Earth for study in 2006 suggests the tiny specks open a door to studying the origins of the ...

A guide to the 2014 Neptune opposition season

22 hours ago

Never seen Neptune? Now is a good time to try, as the outermost ice giant world reaches opposition this weekend at 14:00 Universal Time (UT) or 10:00 AM EDT on Friday, August 29th. This means that the distant ...

How can we find tiny particles in exoplanet atmospheres?

22 hours ago

It may seem like magic, but astronomers have worked out a scheme that will allow them to detect and measure particles ten times smaller than the width of a human hair, even at many light-years distance.  ...

Spitzer telescope witnesses asteroid smashup

Aug 28, 2014

(Phys.org) —NASA's Spitzer Space Telescope has spotted an eruption of dust around a young star, possibly the result of a smashup between large asteroids. This type of collision can eventually lead to the ...

User comments : 0