Researchers look to make environmentally friendly plastics

Apr 17, 2008

Every year, more than 30 billion water bottles are added to America's landfills, creating a mountainous environmental problem. But if research at Missouri University of Science and Technology is successful, the plastic bottles of the future could literally disappear within four months of being discarded.

The Missouri S&T research team is constructing new breeds of biodegradable and bioavailable plastics in an effort to reduce the tons of plastic waste that ends up in the nation’s landfills each year. Bioavailable plastics contain substances that can be absorbed by living systems during their normal physiological functions.

By combining and modifying a variety of bio-based, oil-based and natural polymers, the team seeks to create optimal blends that can be used to make agricultural films, bottles, biomedical and drug delivery devices, and more.

The team is working under the direction of Dr. K.B. Lee, professor of chemical engineering at Missouri S&T, to improve the properties of the biodegradable plastics for real-life products. Although companies already sell biodegradable polymers, the products are often expensive, of poor quality or developed for specific applications. That’s why the team is investigating how bio-based fillers, such as starch and fibers, can be included to reduce the cost in a variety of commercial applications.

The group is also interested in incorporating glycerol – a major byproduct of the biodiesel process – in the new plastics.

Some of the group’s new polymers incorporate renewable resources, such as polylactic acid, which is created by fermenting starch. The group is very interested in renewable resources because their research and development efforts are also focused on developing efficient and cost-effective biodiesel and corn ethanol processes.

“Different chemical and biological mechanisms are responsible for the degradation of polymers,” says Mahin Shahlari, a chemical engineering Ph.D. student at Missouri S&T. “For example, it’s known that polylactic acid will degrade in 45 to 60 days if composted at temperatures between 122 to 140 degrees Fahrenheit.”

As polylactic acid degrades, the material reacts with water to decompose into small molecules, which are then mineralized into water and carbon dioxide.

“In general, the main end products of polymer degradation are water and carbon dioxide,” Shahlari explains. “Polylatic acid has the potential of replacing the regular water bottles, and we anticipate that our research could be incorporated into that field too.

“We are not just molding and extruding commercially available biodegrable resins. We also are incorporating nanotechnology, supercritical fluid technology and graft copolymer compatibilization, most of which are developed and patented by our group.”

Source: Missouri University of Science and Technology

Explore further: Programmed synthesis towards multi-substituted benzene derivatives

add to favorites email to friend print save as pdf

Related Stories

Nanotechnology changes behavior of materials

25 minutes ago

One of the reasons solar cells are not used more widely is cost—the materials used to make them most efficient are expensive. Engineers are exploring ways to print solar cells from inks, but the devices ...

New algorithm resolves Wi-Fi interference problems

25 minutes ago

To overcome the problem of interference between wireless networks, a doctoral student at EPFL has developed an algorithm that automatically selects the best frequency band according to the usage of neighboring ...

'Predicted' zeolites may fuel efficient processes

35 minutes ago

(Phys.org)—Scientists at Rice University and the University of Minnesota have identified synthetic materials that may purify ethanol more efficiently and greatly improve the separation of long-chain hydrocarbons ...

Gullies on Vesta suggest past water-mobilized flows

45 minutes ago

(Phys.org)—Protoplanet Vesta, visited by NASA's Dawn spacecraft from 2011 to 2013, was once thought to be completely dry, incapable of retaining water because of the low temperatures and pressures at its ...

Cichlid sisters swim together in order to reach the goal

5 minutes ago

The manner and routes of dispersal vary with the species and the ecological conditions. Many fish form shoals to avoid predation. Shoaling with familiar conspecifics affords the fish an even greater advantage ...

Recommended for you

Cell imaging gets colorful

7 hours ago

The detection and imaging of protein-protein interactions in live cells just got a lot more colourful, thanks to a new technology developed by University of Alberta chemist Dr. Robert E. Campbell and his ...

New strategy to combat 'undruggable' cancer molecule

7 hours ago

Three of the four most fatal cancers are caused by a protein known as Ras; either because it mutates or simply because it ends up in the wrong place at the wrong time. Ras has proven an elusive target for ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.