Salt-tolerant gene found in simple plant nothing to sneeze at

Apr 07, 2008

Whether a plant withers unproductively or thrives in salty conditions may now be better understood by biologists. The cellular mechanism that controls salt tolerance has been found in the arabidopsis plant by a Texas AgriLife Research scientist collaborating with an international team.

Complex-N-glycan, a carbohydrate linked to a protein in plant cells, was previously thought to have no helpful function for plant growth and to cause certain allergies in humans, according to Dr. Hisashi Koiwa, lead author of the study in this week’s Proceedings of the National Academy of Science.

“This gene has been considered non-essential or even a nuisance,” Koiwa said. “People thought it was an allergen and couldn’t find anything good it was doing in plants. So, it was thought of as not necessary for the growth or development of a plant.”

However, the team discovered that this carbohydrate may, in fact, be responsible for a plants’ ability to contend with salt water.

The team’s finding “significantly clarifies” the role of the gene and could lead to the development of food crops and other plants capable of producing well in areas with salty water, according to the science academy’s journal reviewers.

Almost one-third of nation’s irrigated land and half of the world’s land is salt-affected, according to the U.S. Agriculture Department’s Agriculture Research Service. Salt left in the soil after the water evaporates, the research service notes, means plants don’t grow as well and, therefore, yield less.

The study used arabidopsis, a plant commonly used in labs because it grows quickly and has a relatively simple, well-known genome.

The researchers applied salt to the growing plants and then examined sick plants, or those that appeared salt sensitive.

“We had to study the diseased status of the plant to understand its health,” Koiwa said. “We looked for sick plants in the lab to find out why they were that way.”v

He said the finding may help plant breeders look for this gene as they cross plants in order to develop varieties less affected by salt.

Source: Texas A&M University

Explore further: Sagebrush ecosystem recovery hobbled by loss of soil complexity at development sites

add to favorites email to friend print save as pdf

Related Stories

New contaminants found in oil and gas wastewater

Jan 14, 2015

Duke University scientists have discovered high levels of two potentially hazardous contaminants, ammonium and iodide, in wastewater being discharged or spilled into streams and rivers from oil and gas operations in Pennsylvania ...

How sea spray particles evolve in the atmosphere

Jan 05, 2015

When ocean waves make bursting whitecaps or crash against the shores, tiny particles of sea spray enter the atmosphere. Once airborne, the particles are quickly coated by carbon-rich or organic chemicals. ...

New tests count total phenolics in fruits and veggies

Jan 05, 2015

Agricultural Research Service investigators have a long history of designing and developing reliable analytical methods for measuring nutrients and other compounds in foods. ARS scientists have now devised ...

Recommended for you

Researchers identify new mechanism to aid cells under stress

12 hours ago

A team of biologists from NYU and Harvard has identified new details in a cellular mechanism that serves as a defense against stress. The findings potentially offer insights into tumor progression and neurodegenerative diseases, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.