No laughing matter -- bacteria are releasing a serious greenhouse gas

Mar 31, 2008

Unlike carbon dioxide and methane, laughing gas has been largely ignored by world leaders as a worrying greenhouse gas. But nitrous oxide must be taken more seriously, says Professor David Richardson from the University of East Anglia in Norwich, UK, speaking today at the Society for General Microbiology’s 162nd meeting being held this week at the Edinburgh International Conference Centre.

“It only makes up 9% of total greenhouse gas emissions, but it’s got 300 times more global warming potential than carbon dioxide”, says Prof Richardson. “It can survive in the atmosphere for 150 years, and it’s recognised in the Kyoto protocol as one of the key gases we need to limit”.

The potent gas is mainly coming from waste treatment plants and agriculture. Its release is increasing at the rate of 50 parts per billion or 0.25% every year. This means that it can be better controlled with suitable management strategies, but only if the importance of nitrous oxide (N2O) is widely recognised first.

“When faced with a shortage of oxygen, many species of bacteria can switch from using oxygen to using nitrates instead”, says Prof Richardson. “Nitrates can support their respiration, the equivalent of our breathing, and bacteria can get energy through processes called denitrification and ammonification. When they do this nitrous oxide is released into the environment”.

Municipal sewage treatment plants, landfill sites and marshy areas polluted with too much agricultural fertiliser are all places teeming with so many bacteria that there is a shortage of oxygen for all of them to survive using normal respiration alone. This means they need to use other respiratory strategies, which release nitrous oxide.

The researchers are using a combination of laboratory based studies, fieldwork and computer modelling to understand better the key environmental variables that make different micro-organisms release nitrous oxide.

“We are finding new biological routes for nitrous oxide emission that no-one ever suspected before. This could make a big impact on our environment”, says Prof Richardson. “Global warming affects everyone, and understanding the biology of nitrous oxide emissions will be an important step in mitigating their impact. We urgently need to start developing better strategies to improve management of these emissions in the agricultural and waste treatment sectors”.

Source: Society for General Microbiology

Explore further: NYSCF Research Institute announces largest-ever stem cell repository

add to favorites email to friend print save as pdf

Related Stories

Nitrous oxide: definitely no laughing matter

Feb 18, 2008

Farmers, food suppliers, policy-makers, business leaders and environmentalists are joining forces to confront the threat of the ‘forgotten greenhouse gas’ by taking part in an influential new forum at the University of ...

Recommended for you

New feather findings get scientists in a flap

11 hours ago

Scientists from the University of Southampton have revealed that feather shafts are made of a multi-layered fibrous composite material, much like carbon fibre, which allows the feather to bend and twist to ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

snwboardn
2.3 / 5 (3) Mar 31, 2008
Screw turning the lights off, go kill some bacteria for an hour.
DGBEACH
4 / 5 (2) Mar 31, 2008
or turn on the UV lamps instead! :)
maxberan
1.7 / 5 (3) Apr 01, 2008
Typical scientist blather. That 9% already incorporates the factor of 300. Richardson''s use of "but" in his quote is clearly intended to misdirect the reader into believing that N2O's contribution has been understated by past evaluations.