Finely tuned WspRs help bacteria beat body by building biofilm

Mar 25, 2008
Finely tuned WspRs help bacteria beat body by building biofilm
Tetrameric assembly of the response regulator diguanylate cyclase WspR from Pseudomonas aeruginosa. The inset shows a close-up of cyclic di-GMP bound to the inhibitory site. Credit: Holger Sondermann, et. al

Bacteria are particularly harmful to human health when they band together to form a biofilm—a sheet composed of many individual bacteria glued together—because this can allow them to escape from both antibiotics and the immune system of their host. It is thought that most chronic infections are caused by bacterial biofilms, and a paper published in this week’s PLoS Biology explores the signalling system that causes bacteria to team up in this way.

Pseudomonas is the pathogen that forms biofilms in the lungs of people with cystic fibrosis. The new paper, from Holger Sondermann and colleagues, identifies a novel kind of control system for bacterial signalling. Bacteria form a biofilm when the concentration of a molecule called c-di-GMP gets above a certain threshold. Sondermann et al. have determined the structure of the enzyme that makes c-di-GMP. The enzyme is called WspR in Pseudomonas, and the way WspR is controlled in the cell is the focus of their paper.

The authors determined the crystal structure of WspR and followed up with biochemical analysis of the enzyme. This work showed that WspR exists in an active form that produces c-di-GMP and is then bound by c-di-GMP and forced into an inactive form. The study therefore reveals a finely balanced equilibrium between the synthesis and degradation of this key player in biofilm formation.

New approaches to controlling the behavior of bacteria responsible for chronic infections can be envisaged. Because the signalling molecules involved in biofilm formation, such as c-di-GMP, are uniquely found in bacteria, the authors hope that there is potential for new therapeutic treatments based on this work; if you interrupted this bacterial signalling it would have no negative effect on the human host but could be devastating for the bacteria.

Citation: De N, Pirruccello M, Krasteva PV, Bae N, Raghavan RV, et al. (2008) Phosphorylation-independent regulation of the diguanylate cyclase WspR. PLoS Biol 6(3): e67.doi:10.1371/journal.pbio.0060067

Source: Public Library of Science

Explore further: Norway tests out 'animal rights cops'

Related Stories

Classroom acoustics for architects

9 hours ago

The Acoustical Society of America (ASA) has published a free online booklet for architects to aid in the application of ANSI/ASA S12.60-2010/Part 1-American National Standard Acoustical Performance Criteria, Design Requirements, ...

Recommended for you

Norway tests out 'animal rights cops'

6 hours ago

Norwegian police is creating a unit to investigate cruelty to animals, the government said Monday, arguing that those who hurt animals often harm people too.

High-pitched sounds cause seizures in old cats

8 hours ago

When the charity International Cat Care asked veterinary neurologists at Davies Veterinary Specialists, UK, for help with several enquiries it had received regarding cats having seizures, seemingly in response ...

Rare dune plants thrive on disturbance

8 hours ago

Beginning in the 1880s, coastal dunes in the United States were planted with European beachgrass (Ammophila arenaria) in an attempt to hold the sand in place and prevent it from migrating. The grass did th ...

How an RNA gene silences a whole chromosome

10 hours ago

Researchers at Caltech have discovered how an abundant class of RNA genes, called long non-coding RNAs (lncRNAs, pronounced link RNAs) can regulate key genes. By studying an important lncRNA, called Xist, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.