Finely tuned WspRs help bacteria beat body by building biofilm

Mar 25, 2008
Finely tuned WspRs help bacteria beat body by building biofilm
Tetrameric assembly of the response regulator diguanylate cyclase WspR from Pseudomonas aeruginosa. The inset shows a close-up of cyclic di-GMP bound to the inhibitory site. Credit: Holger Sondermann, et. al

Bacteria are particularly harmful to human health when they band together to form a biofilm—a sheet composed of many individual bacteria glued together—because this can allow them to escape from both antibiotics and the immune system of their host. It is thought that most chronic infections are caused by bacterial biofilms, and a paper published in this week’s PLoS Biology explores the signalling system that causes bacteria to team up in this way.

Pseudomonas is the pathogen that forms biofilms in the lungs of people with cystic fibrosis. The new paper, from Holger Sondermann and colleagues, identifies a novel kind of control system for bacterial signalling. Bacteria form a biofilm when the concentration of a molecule called c-di-GMP gets above a certain threshold. Sondermann et al. have determined the structure of the enzyme that makes c-di-GMP. The enzyme is called WspR in Pseudomonas, and the way WspR is controlled in the cell is the focus of their paper.

The authors determined the crystal structure of WspR and followed up with biochemical analysis of the enzyme. This work showed that WspR exists in an active form that produces c-di-GMP and is then bound by c-di-GMP and forced into an inactive form. The study therefore reveals a finely balanced equilibrium between the synthesis and degradation of this key player in biofilm formation.

New approaches to controlling the behavior of bacteria responsible for chronic infections can be envisaged. Because the signalling molecules involved in biofilm formation, such as c-di-GMP, are uniquely found in bacteria, the authors hope that there is potential for new therapeutic treatments based on this work; if you interrupted this bacterial signalling it would have no negative effect on the human host but could be devastating for the bacteria.

Citation: De N, Pirruccello M, Krasteva PV, Bae N, Raghavan RV, et al. (2008) Phosphorylation-independent regulation of the diguanylate cyclase WspR. PLoS Biol 6(3): e67.doi:10.1371/journal.pbio.0060067

Source: Public Library of Science

Explore further: Aging white lion euthanized at Ohio zoo

add to favorites email to friend print save as pdf

Related Stories

Why the Sony hack isn't big news in Japan

9 hours ago

Japan's biggest newspaper, Yomiuri Shimbun, featured a story about Sony Corp. on its website Friday. It wasn't about hacking. It was about the company's struggling tablet business.

Hopes, fears, doubts surround Cuba's oil future

11 hours ago

One of the most prolific oil and gas basins on the planet sits just off Cuba's northwest coast, and the thaw in relations with the United States is giving rise to hopes that Cuba can now get in on the action.

Ancient clay seals may shed light on biblical era

11 hours ago

Impressions from ancient clay seals found at a small site in Israel east of Gaza are signs of government in an area thought to be entirely rural during the 10th century B.C., says Mississippi State University archaeologist ...

Off-world manufacturing is a go with space printer

13 hours ago

On Friday, the BBC reported on a NASA email exchange with a space station which involved astronauts on the International Space Station using their 3-D printer to make a wrench from instructions sent up in ...

Recommended for you

A vegetarian carnivorous plant

Dec 19, 2014

Carnivorous plants catch and digest tiny animals in order and derive benefits for their nutrition. Interestingly the trend towards vegetarianism seems to overcome carnivorous plants as well. The aquatic carnivorous bladderwort, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.