A chemical 'keypad lock' for biomolecular computers

Mar 24, 2008

Researchers in New York are reporting an advance toward a new generation of ultra-powerful computers built from DNA and enzymes, rather than transistors, silicon chips, and plastic. Their report on development of a key component for these “biomolecular computers” is scheduled for the March 26 issue of ACS’ Journal of the American Chemical Society.

In the new study, Evgeny Katz and colleagues describe development of a chemical “keypad lock,” one of the first chemical-based security systems of its kind. The researchers note that years of effort have gone into developing biomolecular computers, which rely on chemical reactions rather than silicon chips to perform logic functions.

Among their uses would be encryption of financial, military, and other confidential information. Only individuals with access to a secret “key” — a chemical key — could unlock the file and access the data.

The research by Katz and colleagues solved one part of this technological challenge: The security code. They identified a series of naturally occurring chemical reactions that act as a “keypad lock.” In laboratory studies, they demonstrated that by adding the correct series of chemicals, the lock could be opened to access the computer. On the other hand, adding the incorrect chemicals to the system acts as a wrong password and prevents access to the computer, they say.

“In addition to the biomolecular security applications, the enzyme-based implication logic networks will be extremely important for making autonomous decisions on the use of specific tools/drugs in various implantable medical systems.”

Source: ACS

Explore further: Mineral magic? Common mineral capable of making and breaking bonds

add to favorites email to friend print save as pdf

Related Stories

Evaluating system security by analyzing spam volume

13 minutes ago

The Center for Research on Electronic Commerce (CREC) at The University of Texas at Austin is working to protect consumer data by using a company's spam volume to evaluate its security vulnerability through the SpamRankings.net ...

Herbivore drool defeats fungal defence

33 minutes ago

A report in Biology Letters shows that the drool of herbivores might help defeat the toxic fungal defences of the plants they graze on.

What the UK Space Agency can teach Australia

13 minutes ago

Australia has had an active civil space program since 1947 but has much to learn if it is to capture a bigger share of growing billion dollar global space industry. ...

Recommended for you

Building the ideal rest stop for protons

5 hours ago

Where protons, or positive charges, decide to rest makes the difference between proceeding towards ammonia (NH3) production or not, according to scientists at Pacific Northwest National Laboratory (PNNL) and ...

Cagey material acts as alcohol factory

6 hours ago

Some chemical conversions are harder than others. Refining natural gas into an easy-to-transport, easy-to-store liquid alcohol has so far been a logistic and economic challenge. But now, a new material, designed ...

User comments : 0