Why juniper trees can live on less water

Feb 27, 2008
Why juniper trees can live on less water
Hardy junipers grow near cacti in New Mexico's Florida Mountains. Photo: Cynthia Willson

An ability to avoid the plant equivalent of vapor lock and a favorable evolutionary history may explain the unusual drought resistance of junipers, some varieties of which are now spreading rapidly in water-starved regions of the western United States, a Duke University study has found.

"The take-home message is that junipers are the most drought-resistant group that has ever been studied," said Robert Jackson, a professor of global environmental change and biology at Duke's Nicholas School of the Environment and Earth Sciences.

"We examined 14 species from the U.S. and Caribbean, and they're all relatively drought-resistant -- even ones in the mountains of Jamaica that get hundreds of inches of rain a year," he said.

"They've been expanding for about 100 years in some places, and drought plays a role in that," added Jackson, who is corresponding author of the new report published Feb. 27 in the American Journal of Botany's online edition. "For example, recent droughts have decimated pinyon pine populations in pinyon-juniper woodlands of the Southwestern U.S. but left the junipers relatively unscathed."

Many juniper species -- including several popularly known as cedars -- "are invading drier habitats and increasing in abundance where they already exist by surviving droughts that other conifers cannot," the report said.

The work was funded by the National Science Foundation, Duke University and the Andrew W. Mellon Foundation.

To understand why junipers are so successful, Jackson's graduate student Cynthia Willson and Duke associate biology professor Paul Manos assessed structural and genetic features in the 14 species that can explain their special drought tolerance.

They found a key structural adaptation in junipers: resistance to what scientists call "cavitation" -- a tendency for bubbles to form in the water-conducting xylem tissues of plants.

Water is sucked through xylem tissues under a partial vacuum, "so it's almost like a rubber band being stretched out," explained Jackson. "The dryer the conditions, the greater the tension on that 'rubber band' and the more likely that it will snap. If it snaps, air bubbles can get into the xylem."

The scientists found that xylem tissues of juniper species tend to be reinforced with extra woody material to prevent rupture. Such rupturing can introduce bubble-forming air either through seepage from adjacent cavities or by coming out of solution from the water itself, Jackson said.

The scientists also determined that the more cavitation-resistant Juniper species have thicker but narrower leaves -- a trait known as low specific leaf area (SLA) -- and live primarily in the western United States.

"Plants in drier environments typically have lower SLA," said Willson, the study's first author, who having completed her Ph.D. at Duke is now a student at North Carolina State University's College of Veterinary Medicine. "We found that junipers from the driest environments were more drought resistant and also had the lowest SLA."

Their research found that the most cavitation-resistant species is the California juniper, which grows in California's Mojave Desert, while the least resistant is the eastern red cedar -- the most widespread conifer in the relatively-moist eastern U.S.

While less drought-tolerant than other junipers, eastern red cedars still handle dry spells well and are in fact invading into Midwestern states including Nebraska, Jackson noted. Juniper species growing in wet parts of the Caribbean also benefit from drought tolerance because they "tend to grow in shallow, rocky soils that don't hold a lot of water," Jackson said.

In parts of the Southwest undergoing an extended drying period, junipers are edging out another hardy, water-thrifty conifer -- the pinyon pine. "They're both very drought- resistant, but the pinyons aren't as resistant as the junipers are," Jackson said.

The scientists also investigated how and where these tree types evolved their collective drought tolerance by analyzing each juniper species' DNA. That analysis found that junipers evolved into different species relatively recently, separating into eastern and western groups -- technically called "clades."

"The center of diversity for junipers is in arid regions of Mexico," said Willson. "The fact that many juniper species seem to be more drought-resistant than necessary for their current range suggests that a common ancestor of those two clades was also quite drought-resistant."

Source: Duke University

Explore further: EU approves more GM food as row simmers

Related Stories

Grassroots approach to conservation developed

Jul 10, 2012

A new strategy to manage invasive species and achieve broader conservation goals is being tested in the Grand River Grasslands, an area within the North American tallgrass prairie ecoregion. A University of ...

Strange, fanged deer persists in Afghanistan

Oct 31, 2014

More than 60 years after its last confirmed sighting, a strange deer with vampire-like fangs still persists in the rugged forested slopes of northeast Afghanistan according to a research team led by the Wildlife ...

Fecal transplants let packrats eat poison

Jul 21, 2014

Woodrats lost their ability to eat toxic creosote bushes after antibiotics killed their gut microbes. Woodrats that never ate the plants were able to do so after receiving fecal transplants with microbes ...

Recommended for you

York's anti-malarial plant given Chinese approval

5 hours ago

A new hybrid plant used in anti-malarial drug production, developed by scientists at the University of York's Centre for Novel Agricultural Products (CNAP), is now registered as a new variety in China.

The appeal of being anti-GMO

10 hours ago

A team of Belgian philosophers and plant biotechnologists have turned to cognitive science to explain why opposition to genetically modified organisms (GMOs) has become so widespread, despite positive contributions ...

Micro fingers for arranging single cells

10 hours ago

Functional analysis of a cell, which is the fundamental unit of life, is important for gaining new insights into medical and pharmaceutical fields. For efficiently studying cell functions, it is essential ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.