New nano-material research a 'pore' excuse for engineering

Mar 21, 2006

A new study by chemists and engineers at the University of Toronto describes a nanoscale material they've created that could help satisfy society's never-ending hunger for smaller digital devices and cellphones, and could even lead to new methods for delivering medications via skin patches.

The material, known as periodic mesoporous organosilica (PMO), is a thin film interspersed with pores just two-billionths of a metre across. The team created it by mixing an organosilica precursor (silica glass, containing organic groups) with a surfactant -- essentially, a soap that mixes oil and water -- which causes the organosilica to self-assemble into a nanostructure. The scientists then washed away the surfactant to leave a nanoporous material. When they examined the thin film that remained, they discovered that it made an excellent insulator that could be used to separate tiny wires inside microelectronics.

The study appears on the cover of the March issue of Materials Today.

"It demonstrates how creative chemistry can lead to really interesting engineering -- it's a good marriage," says Benjamin Hatton, who led the work while he was a PhD candidate working with both the Departments of Chemistry, with supervisor Professor Geoffrey Ozin, and Materials Science and Engineering, with supervisor Professor Doug Perovic. "Technology can develop in unexpected ways, and what we've found here could lead to developments in microelectronics or drug delivery systems."

Conventionally, computer chip manufacturers have insulated their wire connections with silica glass, preventing them from coming into contact and interfering, with each other. But the PMO film described in this study acts as a better insulator and would take up far less room, allowing components to shrink even further. "Industry is always looking for a better insulator," Hatton says. "This is an example of how materials chemistry can provide innovative solutions to the design of novel materials."

Source: University of Toronto

Explore further: Innovative strategy to facilitate organ repair

add to favorites email to friend print save as pdf

Related Stories

'Exotic' material is like a switch when super thin

14 hours ago

(Phys.org) —Ever-shrinking electronic devices could get down to atomic dimensions with the help of transition metal oxides, a class of materials that seems to have it all: superconductivity, magnetoresistance ...

Scalable CVD process for making 2-D molybdenum diselenide

Apr 08, 2014

(Phys.org) —Nanoengineering researchers at Rice University and Nanyang Technological University in Singapore have unveiled a potentially scalable method for making one-atom-thick layers of molybdenum diselenide—a ...

Recommended for you

Innovative strategy to facilitate organ repair

13 hours ago

A significant breakthrough could revolutionize surgical practice and regenerative medicine. A team led by Ludwik Leibler from the Laboratoire Matière Molle et Chimie (CNRS/ESPCI Paris Tech) and Didier Letourneur ...

Thinnest feasible nano-membrane produced

Apr 17, 2014

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

Wiring up carbon-based electronics

Apr 17, 2014

Carbon-based nanostructures such as nanotubes, graphene sheets, and nanoribbons are unique building blocks showing versatile nanomechanical and nanoelectronic properties. These materials which are ordered ...

User comments : 0

More news stories

'Exotic' material is like a switch when super thin

(Phys.org) —Ever-shrinking electronic devices could get down to atomic dimensions with the help of transition metal oxides, a class of materials that seems to have it all: superconductivity, magnetoresistance ...

Innovative strategy to facilitate organ repair

A significant breakthrough could revolutionize surgical practice and regenerative medicine. A team led by Ludwik Leibler from the Laboratoire Matière Molle et Chimie (CNRS/ESPCI Paris Tech) and Didier Letourneur ...

Impact glass stores biodata for millions of years

(Phys.org) —Bits of plant life encapsulated in molten glass by asteroid and comet impacts millions of years ago give geologists information about climate and life forms on the ancient Earth. Scientists ...

Researchers successfully clone adult human stem cells

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...