New nano-material research a 'pore' excuse for engineering

Mar 21, 2006

A new study by chemists and engineers at the University of Toronto describes a nanoscale material they've created that could help satisfy society's never-ending hunger for smaller digital devices and cellphones, and could even lead to new methods for delivering medications via skin patches.

The material, known as periodic mesoporous organosilica (PMO), is a thin film interspersed with pores just two-billionths of a metre across. The team created it by mixing an organosilica precursor (silica glass, containing organic groups) with a surfactant -- essentially, a soap that mixes oil and water -- which causes the organosilica to self-assemble into a nanostructure. The scientists then washed away the surfactant to leave a nanoporous material. When they examined the thin film that remained, they discovered that it made an excellent insulator that could be used to separate tiny wires inside microelectronics.

The study appears on the cover of the March issue of Materials Today.

"It demonstrates how creative chemistry can lead to really interesting engineering -- it's a good marriage," says Benjamin Hatton, who led the work while he was a PhD candidate working with both the Departments of Chemistry, with supervisor Professor Geoffrey Ozin, and Materials Science and Engineering, with supervisor Professor Doug Perovic. "Technology can develop in unexpected ways, and what we've found here could lead to developments in microelectronics or drug delivery systems."

Conventionally, computer chip manufacturers have insulated their wire connections with silica glass, preventing them from coming into contact and interfering, with each other. But the PMO film described in this study acts as a better insulator and would take up far less room, allowing components to shrink even further. "Industry is always looking for a better insulator," Hatton says. "This is an example of how materials chemistry can provide innovative solutions to the design of novel materials."

Source: University of Toronto

Explore further: Google eyes nanoparticle platform as part of health rethink

add to favorites email to friend print save as pdf

Related Stories

Pinholes are pitfalls for high performance solar cells

Jan 30, 2015

The most popular next-generation solar cells under development may have a problem – the top layer is full of tiny pinholes, researchers at the Okinawa Institute of Science and Technology Graduate University ...

Solving an organic semiconductor mystery

Jan 16, 2015

Organic semiconductors are prized for light emitting diodes (LEDs), field effect transistors (FETs) and photovoltaic cells. As they can be printed from solution, they provide a highly scalable, cost-effective ...

Solar cell polymers with multiplied electrical output

Jan 12, 2015

One challenge in improving the efficiency of solar cells is that some of the absorbed light energy is lost as heat. So scientists have been looking to design materials that can convert more of that energy ...

Shedding light on why blue LEDs are so tricky to make

Jan 07, 2015

Scientists at University College London, in collaboration with groups at the University of Bath and the Daresbury Laboratory, have uncovered the mystery of why blue light-emitting diodes (LEDs) are so difficult to make, by ...

Recommended for you

DNA nanoswitches reveal how life's molecules connect

Jan 30, 2015

A complex interplay of molecular components governs almost all aspects of biological sciences - healthy organism development, disease progression, and drug efficacy are all dependent on the way life's molecules ...

Holes in valence bands of nanodiamonds discovered

Jan 28, 2015

Nanodiamonds are tiny crystals only a few nanometers in size. While they possess the crystalline structure of diamonds, their properties diverge considerably from those of their big brothers, because their ...

Demystifying nanocrystal solar cells

Jan 28, 2015

ETH researchers have developed a comprehensive model to explain how electrons flow inside new types of solar cells made of tiny crystals. The model allows for a better understanding of such cells and may ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.