Algorithm Advance Produces Quantum Calculation Record

Mar 17, 2006

Two theoreticians from the National Institute of Standards and Technology and Indiana University have published the most accurate values yet for fundamental atomic properties of a molecule -- values calculated from theory alone.

In a recent paper,* James Sims of NIST and Stanley Hagstrom of IU announced a new high-precision calculation of the energy required to pull apart the two atoms in a hydrogen molecule (H2). Accurate to 1 part in 100 billion, these are the most accurate energy values ever obtained for a molecule of that size, 100 times better than the best previous calculated value or the best experimental value. Their results are intrinsically interesting to astronomers studying galactic clouds of hydrogen, and to anyone else doing precision hydrogen spectroscopy, but the methods they used are perhaps equally important.

The calculation requires solving an approximation of the Schrödinger equation, one of the central equations of quantum mechanics. It can be approximated as the sum of an infinite number of terms, each additional term contributing a bit more to the accuracy of the result. For all but the simplest systems or a relative handful of terms, however, the calculation rapidly becomes impossibly complex. While very precise calculations have been done for systems of just three components such as helium (a nucleus and two electrons), Sims and Hagstrom are the first to reach this level of precision for H2 with two nuclei and two electrons. Their calculations were carried out to 7,034 terms.

To make the problem computationally practical, Sims and Hagstrom merged two earlier algorithms for these calculations—one which has advantages in ease of calculation, and one which more rapidly achieves accurate results—into a hybrid with some of the advantages of both. They also developed improved computer code for a key computational bottleneck (high-precision solution of the large-scale generalized matrix eigenvalue problem) using parallel processing. The final calculations were run on a 147-processor parallel cluster at NIST over the course of a weekend—on a single processor it would have taken close to six months.

* J. Sims and S. Hagstrom. 2006. High precision variational calculations for the Born-Oppenheimer energies of the ground state of the hydrogen molecule. The Journal of Chemical Physics, 124, 094101 (published online on March 1).

Source: NIST

Explore further: Hide and seek: Sterile neutrinos remain elusive

add to favorites email to friend print save as pdf

Related Stories

Theorists Close In on Improved Atomic Property Predictions

Jan 13, 2010

( -- Scientists at the National Institute of Standards and Technology and Indiana University have determined the most accurate values ever for a fundamental property of the element lithium using a novel approach ...

Recommended for you

Hide and seek: Sterile neutrinos remain elusive

19 hours ago

The Daya Bay Collaboration, an international group of scientists studying the subtle transformations of subatomic particles called neutrinos, is publishing its first results on the search for a so-called ...

Novel approach to magnetic measurements atom-by-atom

23 hours ago

Having the possibility to measure magnetic properties of materials at atomic precision is one of the important goals of today's experimental physics. Such measurement technique would give engineers and physicists an ultimate ...

Scientists demonstrate Stokes drift principle

Oct 01, 2014

In nature, waves – such as those in the ocean – begin as local oscillations in the water that spread out, ripple fashion, from their point of origin. But fans of Star Trek will recall a different sort of wave pattern: ...

User comments : 0